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ABSTRACT
As the proportion of older adults continues to grow rapidly here in the U.S. and across the globe, aging adults may be required to make increasingly more independent health-related and financial decisions. Thus, it is increasingly imperative to better understand the impact of age-related psychological changes on decision making. Although a growing body of research has linked age-related deficits in attention, memory, and cognitive control to changes in medial temporal and lateral prefrontal cortical function, remarkably little research has investigated the influence of aging on valuation and associated mesolimbic function in the striatum and medial prefrontal cortex. Likewise, theoretical accounts link age-related declines in a number of basic cognitive abilities to dopamine function, but research has largely neglected age differences in value-based learning and decision making which also rely on the dopamine system. Recent findings reveal age-related declines in the structure of striatal and medial frontal circuits, however it was not previously clear whether these structural declines contribute to functional deficits in incentive processing. Thus, the seven experiments presented here explored potential age differences across a range of value-based tasks from basic anticipatory and consummatory responses to reward cues (Experiments 1–2) to probabilistic value-based learning (Experiments 2–5) to investment decision making (Experiments 6–7). The studies focus on both age-related and non-age-related individual differences in learning and decision making across the adult life span. Overall, three sets of key findings emerge. The first set of experiments on anticipatory affect reveal evidence for an age-related asymmetry in the anticipation of monetary gains and losses, such that older adults appear less sensitive to the prospect of financial loss than younger adults. In a subset of adults, this anticipatory affective bias contributes to loss avoidance learning impairments through the sensitivity of the anterior insula. Thus, although a relative lack of anxiety about potential loss may contribute to increased well-being, this asymmetry may put individuals with blunted loss anticipation at risk for certain types of financial mistakes. In fact, we show that individuals who perform poorly on the laboratory-based loss avoidance learning task accrue more financial debt in the real world. The second set of experiments focus on age differences in value-based learning and reveal that although older adults show intact neural representation of the actual value of reward outcomes, there is an age-related decline in the neural representation of prediction error at outcome in the striatum and medial prefrontal cortex. Age differences in learning are magnified when choice set size is increased, but when the number of trials is extended older adults reach the same performance criterion as younger adults. The third set of experiments focus on age differences in risky financial decision making and reveal that older adults make more suboptimal choices than younger adults when choosing risky assets. Neuroimaging analyses reveal that the representation of expected value in the nucleus accumbens and medial prefrontal cortex is correlated with optimal investment decisions, and that the age-related increase in risky investment mistakes is mediated by a novel neural measure of variability in nucleus accumbens activity. The presentation of value information through visual decision aids improves investment choices in both younger and older adults. These findings are consistent with the notion that mesolimbic circuits play a critical role in optimal choice, and imply that providing simplified information about expected value may improve financial risk taking across the adult life span. Across the experiments, the findings suggest that both age-related affective biases and probabilistic learning impairments can influence decision making both in the laboratory and in the real world through insular and mesolimbic brain regions. Importantly, age-related impairments are reduced under supportive task conditions (designed to target the brain systems identified using neuroimaging). Together, the set of experiments presented here suggests that understanding how the brain processes value information may eventually inform the design of more targeted and effective behavioral interventions for investors of all ages.
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CHAPTER 1
INTRODUCTION
1.1 The Graying of the Global Population
 
1.1.1 Demographic Changes on the Horizon
 
Over the past 100 years, human life expectancy has increased more drastically than all other previous millennia combined. This historically unprecedented increase in longevity is largely the result of a combination of advancements in technology and living conditions that have contributed to steep declines in infant mortality and improvements in physical health across the life span (Fogel, 1997; Fogel & Costa, 1997). In recent decades the increases in longevity have been accompanied by declining fertility. In the past 50 years, while life expectancy has increased by 20 years, the number of births per woman has dropped by almost one-half (UN, 2006). These dramatic demographic changes are increasing the proportion of older adults in the global population (Hayutin, 2007b). Specifically, the percentage of humans over the age of 65 in the population is projected to more than double in next 50 years (UN, 2006). What was once a population pyramid swollen with children at the base is now squaring off, and these trends will continue. The proportion of older adults is projected to accelerate in coming years (Figure 1-1) and continue increasing for several decades (Hayutin, 2007a).
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Figure 1-1. The proportion of adults over the age of 65 is projected to continue growing for several decades in the United States and across the world. Current year marked with dashed vertical line. Data source: U.N. World Population Prospects, 2006.
 
 These added years of life are the gift of increased longevity, but are also accompanied by social, political, and economic challenges (Carstensen, 2009). The increases in life expectancy that occurred during the twentieth century will continue to expand the proportion of older adults in the global population, magnifying the relative economic impact of their financial and health-related decisions (Cairncross, 2007; NIA, 2007). As demographics shift here in the U.S. and across the globe, aging adults may be required to make increasingly more independent health-related and financial decisions. Thus, it is increasingly imperative to better understand the impact of age-related psychological changes on decision making. 
 
1.1.2 An Integrative Scientific Approach
 
Although the social and political implications of the graying of the global population are equally important, this dissertation will focus specifically on the economic implications of an increased proportion of older adults making financial decisions. A number of academic disciplines are relevant to the study of financial decision making from economics and finance to psychology and neuroscience. Although these fields traditionally have very different perspectives and utilize quite diverse methods, this dissertation is an attempt to combine these fields to study individual differences in financial decision making.
Traditionally, the fields of finance and economics do not focus on individuals. A small minority of researchers in finance and economics collect experimental data from individuals, and this research rarely focuses on individual differences. In fact, to some “behavioral finance” is an oxymoron (Bossaerts, 2009a). A widely held belief in the field is that finance has enough data already — it doesn’t need experiments. A great deal of knowledge in the field is drawn from either models alone or large objective datasets detailing credit card usage or portfolio allocation and performance. These datasets contain very specific and numerous details about the outcome of real world financial decisions, but unfortunately provide no insight into the individual decision maker. In contrast, psychologists are experts at examining individuals and characterizing individual differences. In recent years, psychology has become more methodologically integrative (Cacioppo, 2007a, 2007b). Specifically, the integration of neuroscientific methods into the field of psychology has greatly increased understanding of the human mind (Cacioppo, Berntson, & Nusbaum, 2008; Poldrack & Wagner, 2008).
Effective and translational scientific research aimed at addressing the demographic changes on the horizon will require a comprehensive and interdisciplinary approach (Carstensen, 2009). Studying individual differences in financial decision making specifically will require the integration of psychology, neuroscience, and behavioral economics and finance (Bossaerts, 2009b; O'Doherty & Bossaerts, 2008). This research will benefit most from not only measuring the behavior of individuals under controlled experiments but also assessing what people do with their money outside of the laboratory in real world situations.
 
1.2 Decision Making as Integration
 
Goal directed cognition in general and decision making specifically is often the product of an integration of emotional/motivational and cognitive processes. Although these contributions will be discussed independently below, there is a great deal of overlap and interaction between these systems. An attempt to integrate these areas will follow when introducing valuation as a core process underlying decision making. 
 
1.2.1 “Emotional” Processes
 
Although individual decision makers may strive to keep a “cool” head, people often react emotionally when making decisions about money. Although decisions involving money inherently involve a lot of numbers and potential calculations, investment and purchasing decisions are often made based on gut reactions. Does this feel right or wrong? Am I going to make a lot of money or lose everything? Is this a good or bad product – a good or bad price? Which do I like better: Option A or Option B? These general affective tendencies have the power to dominate decisions. In fact, some theories suggest that affect is the primary force driving decision making (Bechara, 2004; Loewenstein, Weber, Hsee, & Welch, 2001; Slovic, Finucane, Peters, & MacGregor, 2002) and that individual preferences (Finucane, Alhakami, Slovic, & Johnson, 2000; Lee, Amir, & Ariely, 2006; Zajonc, 1980) can make the difference between handing the clerk your credit card or keeping it in your wallet. The idea that affective tendencies play a prominent role in decision making does not begin with modern psychology. In fact, in the original formulation of the unifying and primary construct in the field of economics, utility, emotion is central (Bentham, 1948; Loewenstein, 2000). However, this view is not widely accepted in the field of economics and a wealth of experiments and case studies have demonstrated situations in which emotions lead individual decision makers astray. Instead, the dominant view in the field of economics is that decision makers should instead rely only on “cold” and carefully calculated cognition.
 
1.2.2 “Cognitive” Processes
 
Using a traditional dichotomy in psychology, two dissociable types of cognitive skills are relevant for the optimization of financial decisions: crystallized and fluid cognitive abilities. The crystallized cognitive processes (i.e., skill or information that accumulates and is maintained over the life course) relevant to decision making are knowledge and experience. Both experimental and objective measures of decision making have revealed that higher levels of prior knowledge and investment experience play a significant role in portfolio earnings (Delavande, Rohwedder, & Willis, 2008) and financial mistakes (Agarwal, Driscoll, Gabaix, & Laibson, in press). Although investment knowledge and experience may increase with age on average, crystallized cognitive skills may be offset in older age by fluid cognitive decline (Agarwal, et al., in press; Korniotis & Kumar, in press; McArdle, Smith, & Willis, 2009). The experiments presented here will not focus much on crystallized measures1. Instead, the focus of this dissertation will be on exploring the influence of affective biases and fluid cognitive abilities, which have received little attention in the literature.
Fluid cognitive skills include attention, memory, and cognitive control. In order to make a decision, individuals need to direct their attention to information, ignore other irrelevant information, suppress interference from distracters, and in general focus on the current decision being made. For repeated decisions, individuals need to be able to recall the prior consequences of previous decisions. How did my last decision work out? Did I earn money on this asset / account? Although individuals may be able to access an objective record of prior information somewhere, people often rely on the accuracy of their episodic memory of prior events. In fact, emerging research reveals that declarative memory measures influence wealth and account earnings over time (Delavande, et al., 2008; McArdle, et al., 2009), such that individuals with lower levels of declarative memory make less money in the real world (controlling for crystallized measures and demographic variables including age). In addition to basic attentional and memory processes, decision making relies to some extent on cognitive control to maintain and execute goals, resolve errors, figure out what to do in a novel environment, overcome habitual responses, and resist temptation (Norman & Shallice, 1980). 
Other fluid forms of learning and memory are also important for decision making, such as probabilistic learning. For financial decisions specifically, there is often a great deal of uncertainty about future outcomes. Most investments have some degree of risk. Coping with uncertainty and optimizing probabilistic decisions requires the ability to learn from probabilistic feedback and make appropriate predictions. For example, initial evidence suggests that the precision with which individuals make probabilistic predictions is associated with increased portfolio earnings (Lillard & Willis, 2001).
 
1.2.3 Valuation as a Core Process
 
As discussed above, a number of both affective and cognitive processes contribute to decision making. However, these functions are unified in the core process of decision making: valuation (Rushworth, Mars, & Summerfield, 2009). Valuation is the process by which decision options are evaluated. How much is this car worth? How much pay do I need to be offered to accept this new job? How much money should I invest in this stock? Answering these questions requires assessing the value of the various options. The valuation process can be viewed as both “cognitive” and “affective”. Depending on the situation, individuals can evaluate options based on the calculations of a multitude of numbers (e.g., prices, average earnings, costs, quantity), prior information retrieved from memory (e.g., “The last time I invested in this I made money.”), or affective reactions (e.g., “How well does this align with my preferences?”, “How do I feel about this option?”). Individuals may attempt to integrate information from many or all of these sources, but a final decision is made by choosing the option with the highest overall subjective value.
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Figure 1-2. Value system in humans. Axial slice displaying ventral tegmental area (pink) and substantia nigra (purple) in midbrain. Coronal slice displaying caudate (orange), putamen (yellow), and nucleus accumbens (red) in striatum and anterior insula (green). Sagittal slice displaying anterior cingulate (light blue) and medial prefrontal cortex (blue). Lines on sagittal slice indicate location of axial (purple) and coronal (red) slices.
 
Research across species has identified a core network of brain regions that contribute to the valuation process (Figure 1-2). Early research with rodents and non-human primates reveals that dopamine plays a primary role in reward processing (Schultz, 2001). Simple conditioning paradigms have revealed that both the anticipation and receipt of unexpected rewards increases the firing of dopamine neurons in the substantia nigra (SN) and ventral tegmental area (VTA). Schultz and colleagues have shown that dopamine initially fires when unexpected rewards are received but that the signal back-propagates over time with learning and soon dopamine fires when a cue is presented that predicts a reward (Schultz, Dayan, & Montague, 1997). This signal has been characterized as representing a reward prediction error — signaling the difference between actual and expected rewards. These nuclei in the midbrain serve as the primary sources of dopamine to the rest of the brain. The anatomical connections between the midbrain and subcortical and cortical regions are organized in a series of loops (Haber, 2003). This network was originally identified in animals but this pattern of connectivity has been recently demonstrated in humans using diffusion tensor imaging (Cohen, Schoene-Bake, Elger, & Weber, 2009; Draganski, et al., 2008). This ascending spiral of connections creates an integrated network of dopaminergic regions supporting value processing including the SN, VTA, nucleus accumbens (NAcc), caudate, putamen, cingulate gyrus, and medial and lateral prefrontal cortex (Haber & Knutson, 2010).
Functional imaging experiments have revealed consistent evidence for the importance of the mesolimbic system in particular for the processing of reward value in humans. The mesolimbic dopamine circuit includes the VTA, ventromedial aspects of the striatum (including the NAcc and ventral putamen), and the medial prefrontal cortex (MPFC). Using functional neuroimaging, this research has demonstrated that ventral striatal and medial prefrontal activity increases during the anticipation and receipt of monetary gains even in the absence of learning (Knutson, Adams, Fong, & Hommer, 2001a; Knutson, Fong, Adams, Varner, & Hommer, 2001b; Knutson, Fong, Bennett, Adams, & Hommer, 2003; Knutson, Westdorp, Kaiser, & Hommer, 2000). Further, anticipatory activation in the NAcc is correlated with self-reports of positive affect (Bjork, et al., 2004; Knutson, et al., 2000; Samanez-Larkin, et al., 2007). A meta-analysis of these studies reveals that areas of the caudate (with more dominant projections from the SN) and the anterior insula (a non-dopaminergic region) respond to both gain and loss anticipation, with a specific subregion of the insula that responds more selectively to losses (Knutson & Greer, 2008).
Beyond basic incentive elicited responses during anticipation and outcome, value-based learning and decision making also rely on the representation and updating of expectations in this midbrain-striatal-prefrontal network (O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Rushworth, et al., 2009). Feedback-driven reinforcement learning can be viewed as a sort of affective learning. Early theories of learning reveal that actions that produce “satisfying” outcomes are often repeated whereas actions that lead to “annoying” outcomes are avoided (Thorndike, 1966). Neuroimaging research reveals that the processing of positive and negative feedback during probabilistic learning recruits both overlapping and separable structures in the value system. There is evidence for both areas of dissociation within regions contributing to gain and loss learning in the striatum and medial prefrontal cortex (O'Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Seymour, Daw, Dayan, Singer, & Dolan, 2007a) and areas of common activation in the cingulate, striatum (i.e., the putamen and caudate), and medial prefrontal regions for probabilistic learning in general (Gluck, Poldrack, & Kéri, 2008; Kim, Shimojo, & O'Doherty, 2006; Platt & Huettel, 2008; Shohamy, Myers, Kalanithi, & Gluck, 2008). The earlier animal research on reward prediction error signals in the midbrain has been replicated in human fMRI studies in the midbrain (D'Ardenne, McClure, Nystrom, & Cohen, 2008) and in dopamine projections regions like the striatum and medial and orbital prefrontal cortex (McClure, Berns, & Montague, 2003; McClure, York, & Montague, 2004b; O'Doherty, 2004; O'Doherty, et al., 2003). 
Research on risky value-based decision making reveals robust activation in this same network (Kuhnen & Knutson, 2005) with additional contributions from the insula, posterior parietal, and lateral prefrontal cortex (Platt & Huettel, 2008). Activation in the insula has been linked to uncertainty via risk prediction and prediction error (Preuschoff, Quartz, & Bossaerts, 2008), the avoidance of risky options during investment decisions (Kuhnen & Knutson, 2005), and punishment (Seymour, Singer, & Dolan, 2007b), whereas the activation of lateral prefrontal and posterior parietal regions have been associated with control components of decision making (McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007; McClure, Laibson, Loewenstein, & Cohen, 2004a). For risky decisions, both uncertainty (e.g., probability) and reward magnitude need to be integrated in order to make a direct comparison between the subjective value of the available options. This integrated representations of expected value appears in dopamine neurons in non-human animals (Schultz, et al., 1997) and striatal and medial prefrontal regions in humans (Knutson, Taylor, Kaufman, Peterson, & Glover, 2005). 
In summary, across studies on basic incentive processing, probabilistic value-based learning, and risky decision making, the core mechanism underlying valuation in financial decision making appears to be the mesolimbic dopamine system (Knutson & Bossaerts, 2007). Surprisingly, very little research in this growing area has examined variation among healthy adults in incentive processing, learning, and decision making. In fact, prior to the initiation of the experiments presented in this dissertation almost nothing was known about how the function of this system changes across the adult life span.
 
1.3 The Aging Brain
 
As discussed above, decision making is driven by a combination of affective and cognitive processes. Thus, age-related changes in these psychological functions may influence decisions (Peters, Hess, Västfjäll, & Auman, 2007). 
 
1.3.1 Emotional Functioning in the Aging Brain
 
A growing body of research suggests that the ability to regulate emotion remains stable and may even improve across the adult life span (Carstensen, Pasupathi, Mayr, & Nesselroade, 2000; Carstensen, et al., in press; Charles & Carstensen, 2007). Compared to their younger counterparts, older adults recover more quickly from negative emotional states, are less likely to respond to verbal slights with anger (Charles & Carstensen, 2008), maintain positive emotional states longer than younger adults (Carstensen, et al., 2000; Charles & Carstensen, 2008), report superior emotional control (Gross, et al., 1997; Lawton, Kleban, Rajagopal, & Dean, 1992; Tsai, Levenson, & Carstensen, 2000), and display less physiological arousal when experiencing negative emotions (Levenson, Carstensen, Friesen, & Ekman, 1991; Tsai, et al., 2000). A number of studies using a variety of experimental methods have found that older adults selectively attend to positive stimuli and are more likely to retrieve positive memories than negative ones (Charles, Mather, & Carstensen, 2003; Fernandes, Ross, Wiegand, & Schryer, 2008; Isaacowitz, Toner, Goren, & Wilson, 2008; Isaacowitz, Wadlinger, Goren, & Wilson, 2006a, 2006b; Kennedy, Mather, & Carstensen, 2004; Mather & Carstensen, 2003). These somewhat surprising findings contribute to what is often called the “paradox of aging.” Despite age-related losses, emotional well-being remains relatively high in old age. 
This body of research is well organized under the theoretical framework of socioemotional selectivity theory (SST; Carstensen, 1992; Carstensen, 2006). The theory contends that as people age and time horizons imposed by mortality shrink, people place increasingly greater priority on goals related to well-being and relatively less on emotionally riskier goals associated with expanding horizons, learning, and social exploration. Consequently social and cognitive resources are more likely to be allocated to the regulation of emotion (Carstensen, 2006; Carstensen, Fung, & Charles, 2003). The term “positivity effect” has been coined to describe the developmental shift from a preference for negative information in youth to a preference for positive information at older ages (Carstensen, Mikels, & Mather, 2005). The effect is operationalized as a ratio representing the relative difference between younger and older adults. In some cases, it is driven by heightened attention to positive and in others by relatively reduced attention to negative material. This developmental pattern has been observed in memory across short periods of time, i.e., across experimental sessions (Charles, et al., 2003; Mather & Johnson, 2000), as well as in autobiographical memories that span many years (Kennedy, et al., 2004).  A preference for positive over negative is also evident in affective working memory (Mikels, Larkin, Reuter-Lorenz, & Carstensen, 2005) and in affective forecasting (Nielsen, Knutson, & Carstensen, 2008). In the last several years, the positivity effect has been widely replicated in independent laboratories (Comblain, D'Argembeau, & Van der Linden, 2005; Fernandes, et al., 2008; Isaacowitz, et al., 2008; Isaacowitz, et al., 2006b; Kisley, Wood, & Burrows, 2007; Mather, Knight, & McCaffrey, 2005; Schlagman, Schulz, & Kvavilashvili, 2006; Spaniol, Voss, & Grady, 2008). Importantly, this preference for positive information is not impervious to context. SST maintains that chronically activated goals change with age, but of course there are circumstances when younger adults strive to regulate emotion and those when older adults pursue informational goals. Interestingly, when goals are explicitly instructed, age differences in positivity are eliminated (Löckenhoff & Carstensen, 2007). That is, all things being equal, older adults appear to focus on positive information but experimental conditions and instructions can and do eliminate age differences.
Neuroscientific research has only recently begun to investigate socioemotional functioning in the aging brain. However, the emerging findings reveal consistent age differences in patterns of activity in prefrontal and subcortical regions during emotional processing. The most informative and consistent pattern that emerges across a wide range of studies is that there is an age-related reduction in amygdala activation associated with exposure to negative affective stimuli often coupled with an increase in medial and lateral cortical activation (Kryla-Lighthall & Mather, 2009; Samanez-Larkin & Carstensen, forthcoming; St. Jacques, Bessette-Symons, & Cabeza, 2009). Initial evidence for a reduced response to negative stimuli using fMRI raised legitimate questions about the functional capacity of the aging brain.  The pattern emerging in the literature, however, is inconsistent with an argument that the maintenance of well-being in old age is the serendipitous consequence of neural degradation (Cacioppo, Berntson, Bechara, Tranel, & Hawkley, in press).  Rather, brain regions involved in both positive and negative emotional processing in young adulthood appear to be selectively responsive to positive material in older adults (Mather, et al., 2004). Both subcortical and cortical brain regions can be modulated in healthy older adults when necessary but appear to respond selectively to goal congruent stimuli (Samanez-Larkin & Carstensen, forthcoming). The evidence to date suggests that older adults are effectively regulating emotional responses through the tuning of both subcortical and cortical brain regions over the adult life span.
 
1.3.2 Attention, Memory, and Cognitive Control
 
Over the past several decades, psychologists and neuroscientists have made rapid progress towards elucidating the effects of aging on cognition (Cabeza, Nyberg, & Park, 2005; Grady, 2008).  In contrast to the relative preservation of emotional processing with age, both behavioral and neuroimaging studies show a linear negative relationship between age and perceptual and fluid cognitive performance across many types of tasks from visual perception to attention and memory (Park & Schwarz, 2000; Salthouse, 2004).
Age-related perceptual declines are largely the result of changes in the physical structure of the eye which contribute to noisier initial stages of visual processing (Madden, Whiting, & Huettel, 2005). Despite these sensory limitations there is a relative preservation of simple focusing and directing attention with age. However, age differences emerge with increased attentional control demands attributed to deficient prefrontal control. There are robust and well-documented age-related declines in dividing attention, switching, inhibition, and interference with more consistent age effects for retroactive interference (i.e., new material disrupts previously viewed material) than for proactive interference (i.e., prior material disrupt ability to focus on current material) (Reuter-Lorenz & Sylvester, 2005). Neuroimaging studies of sensory aspects of attention reveal smaller activation extents in primary visual regions but similar effect sizes at the peaks between younger and older adults (Gazzaley & D'Esposito, 2005; Madden, et al., 2005). Experiments with higher order perceptual tasks commonly observe age-related decreases in posterior cortical regions (e.g., ventral and dorsal visual pathways) that are often accompanied by increased prefrontal activity (Grady, 2002).
A similar pattern of prefrontal change attributed to control deficits emerges in the memory literature. Although short term maintenance remains intact with age, more executive components of working memory are impaired (Reuter-Lorenz & Sylvester, 2005). Age-related declines in inhibitory control and increases in retroactive and proactive interference have been linked to working memory impairments. Neuroimaging reveals age-related increases in prefrontal activity during working memory tasks, most commonly in the form of increased bilateral recruitment (Reuter-Lorenz & Lustig, 2005; Reuter-Lorenz & Sylvester, 2005). Although some aspects of rote maintenance are intact with age over short delays, relatively broad age-related declines are observed in long-term memory with larger effects for retrieval than encoding (Park & Gutchess, 2005). The general pattern of changes in the aging brain during long-term memory is a combination of decreased medial temporal activity and increased lateral prefrontal activity with age. In both working and long-term memory studies, many scientists interpret these prefrontal increases, especially in the form of a hemispheric asymmetry reduction, as evidence of a compensatory reorganization of the brain with age (Cabeza, 2002; Reuter-Lorenz & Lustig, 2005), although this interpretation is still hotly debated in the literature.
Across studies of attention and memory, a similar pattern of age-related decreases in primary processing regions and increases in lateral prefrontal activity emerges. Although there is some evidence for intact visual attention and short term memory maintenance, deficits across attention and memory have been largely attributed to age differences in attentional control and interference resolution (Engle, 2002; Hasher & Zacks, 1988; Madden, et al., 2005; McDowd & Shaw, 2000; Park & Gutchess, 2005; Reuter-Lorenz & Sylvester, 2005). One unifying current theory is that deficits in attention and memory during healthy aging are largely the result of age-related declines in cognitive control and top-down modulation mediated by the lateral prefrontal cortex (Gazzaley & D'Esposito, 2007) consistent with early theories that lateral prefrontal changes are dominant in healthy aging (West, 1996).
 
1.3.3 Probabilistic Learning
 
In contrast to the research on explicit learning and memory, relatively less research has examined age-related change in implicit learning, which has been linked to a quite different network of subcortical brain regions in the striatum. Although early theoretical accounts suggested that striatal decline may play a prominent role in age-related declines in processing speed and fluid cognitive ability (Hicks & Birren, 1970; Rubin, 1999), almost no human neuroscience research on the topic has followed (Rieckmann & Bäckman, 2009). A number of studies in this area focus on small age differences in motor sequence learning. However, probabilistic learning is much more relevant for decision making. Research on probabilistic learning reveals both preservation (Aizenstein, et al., 2006; Fera, et al., 2005) and decline (Mell, et al., 2005; Mell, et al., 2009) with age. The results of studies using the Iowa Gambling Task2 are mixed with some studies finding age differences (Denburg, Tranel, & Bechara, 2005; Fein, McGillivray, & Finn, 2007) and others showing no behavioral differences between younger and older adults (Kovalchik, Camerer, Grether, Plott, & Allman, 2005; Lamar & Resnick, 2004; Stout, Rodawalt, & Siemers, 2001; Wood, Busemeyer, Koling, Cox, & Davis, 2005). 
The general pattern of results across studies is that performance differences with age are minimized under low task demands, but performance differences between age groups emerge with increases in complexity (e.g., increased number of cues or rule complexity, limited trials, reversals) (Chasseigne, Grau, Mullet, & Cama, 1999). Across studies on probabilistic learning, those which reveal significant age-related declines reveal that older adults need more trials to reach the same performance criterion as younger adults (Mell, et al., 2005; Mell, et al., 2009; Schmitt-Eliassen, Ferstl, Wiesner, Deuschl, & Witt, 2007), consistent with a slower accumulation of evidence demonstrated using drift diffusion models (Ratcliff, Thapar, & McKoon, 2006). This slower rate of accumulation may be due to deficient updating in the striatum. Consistent with this hypothesis, the limited neuroscientific research available reveals reductions in striatal activity during probabilistic category (Fera, et al., 2005) and sequence learning (Aizenstein, et al., 2006) and probabilistic value-based reversal learning (Mell, et al., 2009). Similar to the research on explicit memory, it is possible that additional regions of the brain are recruited with age during probabilistic learning, which contributes to the lack of performance differences in some tasks. It has been recently suggested that although implicit learning tasks may be supported by primarily striatal regions in young adulthood, additional frontal and medial temporal regions are active during probabilistic learning in old age (Rieckmann & Bäckman, 2009). 
 
1.3.4 Age-Related Changes in Structure and Chemistry
 
The majority of psychological research on the aging brain reviewed thus far has used functional neuroimaging, but evidence from structural neuroimaging also reveals robust age-related change throughout the brain. Cross-sectional and longitudinal volumetric studies of age-related change in both grey and white matter reveal regional differences in structural atrophy (Raz, 2000, 2005). Although grey matter atrophy is relatively modest across much of the temporal, occipital, and parietal lobes, frontal and striatal regions undergo the steepest declines in healthy aging (Raz, 2005; Raz, et al., 2005). A similar anterior to posterior gradient emerges in white matter (Madden, Bennett, & Song, 2009). Many of the core structures of the value system as outlined above including the caudate, insula, and prefrontal cortex decline in volume linearly from young adulthood to old age. Although cortical regions of the temporal lobes are relatively spared throughout the adult life span, the hippocampus also show steeps rates of decline with age. However, unlike frontal and striatal regions where atrophy progresses linearly, volumetric declines in the hippocampus are nonlinear remaining relatively stable throughout much of the adult life span but falling off sharply in old age (Raz, 2005). This pattern of linear frontostriatal decline and nonlinear medial temporal decline in healthy aging differs greatly from age-related disease (e.g., Alzheimer’s Disease) where medial temporal declines are continuous and more severe (Buckner, 2004).
Frontostriatal declines in neurochemistry are also prominent in healthy aging (Bäckman & Farde, 2005; Kaasinen & Rinne, 2002). A number of studies examining age-related changes in the dopamine system using radioligand PET imaging have revealed robust declines in presynaptic synthesis, transporters, and postsynaptic receptor binding (Figure 1-3) in the range of 5-10% per decade (Bäckman, et al., 2000; Erixon-Lindroth, et al., 2005; Kaasinen, et al., 2000; Kumakura, et al., 2008; Kumakura, et al., 2005; Volkow, et al., 1996a; Volkow, et al., 1998a; Volkow, et al., 1996b; Volkow, et al., 1998b). As discussed above, dopamine function has been linked to both valuation and a range of fluid cognitive measures. Although no prior studies have directly examined the influence of age-related changes in dopamine on valuation and decision making, binding potential in the striatum has been shown to mediate the relationship between age and performance on basic fluid cognitive measures (Bäckman, et al., 2000; Volkow, et al., 1998a). The majority of these receptor imaging studies have focused on the striatum (largely due to the availability of D2 ligands) (Bäckman & Farde, 2005), which is why its even more surprising that so little attention has been paid to age-related changes in probabilistic learning and value-based decision making. This dissertation aims to begin filling that gap. Although no direct measures of dopamine function are utilized in the experiments presented here, functional activity will be explored in structures with large numbers of dopamine projections.
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Figure 1-3. Presynaptic (adapted with permission from Kumakura, et al., 2005, © Nature Publishing Group) and postsynaptic (adapted with permission from Kaasinen & Rinne, 2002, © Elsevier) age-related declines in dopamine assessed with radioligand PET. Although the declines with age are reliable and significant, they are not as drastic as what is commonly reported in Parkinson’s Disease (PD). Different colorscales are used for top and bottom rows.
 
1.4 Decision Making and Aging
 
1.4.1 Everyday Problem Solving and Decision Making
 
In general age differences in decision making have received relatively little attention in experimental research (Mather, 2006; Sanfey & Hastie, 2000). One area that has received some attention is everyday problem solving, which provides evidence for both preservation and decline with age (Marsiske & Margrett, 2006). Meta-analyses of everyday problem solving reveal non-linear declines with age such that performance peaks in middle age (Denney, 1989) or remains stable from young adulthood to middle age and then declines (Thornton & Dumke, 2005). These findings are qualified by exceptions for social problem solving where there is more consistent evidence for preservation (Blanchard-Fields, 2007; Marsiske & Willis, 1995). Research on social problem solving reveals that older adults are more likely to use an integrated approach. Some evidence suggests that older adults adapt strategies to domains using problem-focused strategies for instrumental decisions and emotional coping strategies for social decisions (Blanchard-Fields, Chen, & Norris, 1997). Older adults also tend to use more passive emotional coping strategies (Blanchard-Fields, 2007) which may contribute to reductions in social conflict.
A separate set of studies focused on everyday decision making uses vignettes and choice scenarios to elicit shopping, driving, or health-related decisions. In these studies the general finding is that older adults use less information to make decisions, review fewer items, and are in general more selective (Berg, Meegan, & Klaczynski, 1999). Serendipitously, this sometimes contributes to older adults being less prone to using faulty heuristics (Kim & Hasher, 2005). A limited set of studies that include additional cognitive measures find relationships with number span and processing speed (Finucane, Mertz, Slovic, & Schmidt, 2005), such that individual higher in cognitive capacity make better decisions. However, these studies rarely include affective measures and do not include a very wide range of cognitive measures that may be more relevant to financial decision making like probabilistic learning. Further, even though the tasks used in these studies are designed to mimic real life decisions, surprisingly little evidence has been provided for the ecological validity of these laboratory tasks (Marsiske & Margrett, 2006). It is also important to note that the majority of tasks revealing age differences use experimenter ratings of decision quality (Finucane, et al., 2005; Finucane, et al., 2002; Thornton & Dumke, 2005). Thus, there is currently little evidence that these hypothetical decisions made in the laboratory reflect competence in real world decisions.
 
1.4.2 Risky Decision Making
 
The experimental research on risky decision making and aging dates back several decades (Botwinick, 1984; Okun, 1976). Research in this area attempts to address popular stereotypes that risk aversion increases with age. Across several decades of research now, these persistent stereotypes are not supported. While some studies reveal either increases or decreases in risk taking during decision making (Deakin, Aitken, Robbins, & Sahakian, 2004; Denburg, et al., 2005), others find no age differences (Dror, Katona, & Mungur, 1998; Wood, et al., 2005). 
In recent years, the most widely used task to examine risky decision making across age is the Iowa Gambling Task where subjects are expected to learn from probabilistic feedback to select lower variance decks with higher average earnings. Some of these studies report an age-related increase in risk seeking and decrease in performance across older adults (Fein, et al., 2007; Lamar & Resnick, 2004; Zamarian, Sinz, Bonatti, Gamboz, & Delazer, 2008) or only in a subset of older adults (Denburg, et al., 2005). Other studies using the same task find no age differences in either risk seeking or performance (Kovalchik, et al., 2005; MacPherson, Phillips, & Della Sala, 2002; Stout, et al., 2001; Wood, et al., 2005).
Thus, in general there is a lack of evidence from experimental research for age differences in risk taking (Botwinick, 1984; Mather, 2006; Sanfey & Hastie, 2000). Not only is there inconsistent evidence for age-related change when older adults are making their own decisions in the laboratory, a similar mix of opposing findings exists in the economics literature with objective data from real world investment behavior (Bakshi & Chen, 1994; Bellante & Green, 2004; Grable, 2000; Grable & Lytton, 1999; Halek & Eisenhauer, 2001; Morin & Suarez, 1983; Riley & Chow, 1992; Wang & Hanna, 1997). The only effect that may contribute to what appears to be an increase in risk aversion is evidence that older adults may be more likely to choose not to choose and instead more often defer decisions or opt for the default (Mather, 2006; Okun, 1976). 
Across the existing literature there is evidence for both preservation and decline in everyday problem solving and decision making. It appears that in many areas general decision making remains relatively intact with age (Mather, 2006; Peters, Finucane, MacGregor, & Slovic, 2000). However, since many decisions (such as choosing a stock in which to invest) may depend on both affective responses and fluid cognitive abilities, age-related biases may emerge during the valuation process and influence performance (Sanfey & Hastie, 2000; Yates & Patalano, 1999). Unfortunately, to date research in this area has provided very little evidence for ecological validity and little psychological specificity about the underlying mechanisms. This dissertation aims to begin filling that gap.
 
1.5 Incentive Processing in the Aging Brain
 
1.5.1 An Interdisciplinary and Translational Approach
 
As mentioned above, a large body of work reveals a steady decline in cognitive processing capacity over the life span, but a robust preservation of emotional processing – particularly for positive material. Thus, both changes in cognitive and affective processing with age may influence financial risk taking and decision making. The experiments included here represent an attempt to examine the specific contributions of core valuation processes to learning and decision making and characterize age-related changes in the mesolimbic neural systems supporting these processes in the striatum and medial prefrontal cortex. The majority of experiments focus on age effects, but additional individual differences across age are also investigated. The experimental approach utilized here to study individual differences in financial decision making is both interdisciplinary and translational. This dissertation combines psychological theory, imaging methods from neuroscience, experimental tasks from behavioral economics, models of learning from computer science, and models of choice from finance. A wide range of data are collected from individuals of various ages both in the laboratory using well-controlled yet relatively applied experimental tasks and in the real world using objective measures of life financial outcomes.
 
1.5.2 Overview of Experiments
 
The seven experiments presented here explore potential age differences across a range of reward-related tasks from basic anticipatory and consummatory responses to reward cues (Experiment 1) to probabilistic reward learning (Experiments 2–5) to investment decision making (Experiments 6–7). The studies focus on both age- and non-age-related individual differences in learning and decision making across the adult life span. 
In Experiment 1, we used functional magnetic resonance imaging to determine whether younger and older adults differed in both self-reported and neural responsiveness to anticipated monetary gains and losses. Consistent with the age-related positivity effect, we predicted that there would be an asymmetry in the anticipation of gains and losses in older adults. In Experiment 2, we followed up the subjects from Experiment 1 almost one year later to explore the implications of anticipatory asymmetries on probabilistic learning. We predicted that sensitivity to anticipated losses in the anterior insula would predict subjects’ ability to learn to avoid losses and as a result identify a subgroup of adults who may be especially vulnerable to losing money. In Experiment 3, to examine the ecological validity of laboratory-based probabilistic learning tasks we examined whether individual differences in probabilistic gain or loss learning across the adult life span were correlated with life financial outcomes. We predicted that individuals who perform poorly in the loss learning task also sacrifice more money in the real world (i.e., accumulate debt), and that individuals who perform well in the gain learning task accrue more money in the real world (i.e., accumulate assets). 
In Experiment 4, we explored age-related changes in the neural systems underlying probabilistic gain learning. We predicted that the mesolimbic representation of actual reward outcomes would be preserved with age, but that behavioral learning rates and the precision of neural representations of prediction errors (i.e., the difference between the actual reward received and the expected reward) throughout the striatum and MPFC would diminish with age. In Experiment 5, we explored the influence of increasing the choice set size and varying the number of available trials in a probabilistic gain learning task on performance in younger and older adults. We predicted that age-related learning impairments would be magnified when the choice set increased, but that with additional trials older adults would reach the same performance criterion as younger adults.
In Experiment 6, we examined age differences in a more applied dynamic financial investment task. We predicted that older adults would make more suboptimal choices than younger adults when choosing risky assets probabilistically associated with rewards. Based on existing neurocomputational theory, we predicted that the age-related performance effect would be associated with neural measures of variability in mesolimbic regions. In Experiment 7, we sought to determine whether decision aids could improve financial risk taking. We predicted that presentation of expected value information would improve decision making in both younger and older adults, but the addition of a distracting secondary task (hypothesized to disrupt frontal contributions to declarative learning and memory) would have less impact on decision quality. The goal of the experiment was to provide decision aids that would equate the performance of older adults (provided with decision aids) to younger adults (at baseline).
 
1.5 Note to Readers
 
Many chapters in this dissertation were adapted from published papers or papers in preparation reflecting collaborative efforts by multiple authors.
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CHAPTER 2
EXPERIMENT 1: ANTICIPATION OF MONETARY GAIN BUT NOT LOSS IN OLDER ADULTS
 
2.1 Introduction
 
Over the past several decades, scientists have made rapid progress toward determining the effects of aging on cognition. Both behavioral and neuroimaging studies show that there is a strong negative relationship between age and cognitive performance across many types of tasks (Cabeza, et al., 2005; Park & Schwarz, 2000). However, a growing body of research also suggests that many affective abilities do not decline with age, and that in some cases they may improve. Accumulating behavioral evidence suggests that older adults perform relatively better on tasks that involve the processing of emotional stimuli (Carstensen, et al., 2005). Socioemotional selectivity theory postulates that the optimization of emotional well-being with age (Carstensen, 2006; Carstensen, Isaacowitz, & Charles, 1999) generate an increased ratio of positive to negative emotional experiences over the life span (Mather & Carstensen, 2005). To date, however, very few neuroimaging studies have focused on changes in emotion with age (Knight & Mather, 2006; Panksepp & Miller, 1996), with only one prior study examining changes in incentive processing over the life span (Marschner, et al., 2005). Studies of brain structure and chemistry provide some evidence for age-related decline. These studies have specifically shown significant structural atrophy of the caudate, insula and prefrontal cortex, as well as global declines in dopamine receptors in the striatum and the prefrontal cortex (Bäckman, et al., 2000; Kaasinen, et al., 2000; Raz, 2005; Volkow, et al., 1998a). Currently, the behavioral implications of these anatomical and chemical changes for brain function during incentive processing remain unclear. 
The monetary incentive delay (MID) task (Knutson, et al., 2000) is designed to elicit both affective responses and neural activation in mesolimbic regions during incentive processing. Event-related functional magnetic resonance imaging (fMRI) studies that have used this task in adolescents and younger adults have implicated striatal and insular activation in the anticipation of uncertain gains and losses (Bjork, et al., 2004; Knutson, et al., 2001a). Because healthy older adults report preserved (or even enhanced) positive affective experience relative to younger adults on a day-to-day basis (Carstensen, et al., 2000), we predicted that both subjective responses and neural activation in anticipation of rewards would be preserved in a healthy older sample. We compared subjective and neural responses to incentives between healthy younger and older adults.
2.2 Methods
 
2.2.1 Participants
 
Twelve younger adults (age 19–27, six female) and 12 older adults (age 65–81, six female) participated in a MID task while undergoing fMRI. All participants gave written informed consent, and the experiment was approved by the Institutional Review Board of the Stanford University Medical School. Care was taken to assess potential confounding baseline differences in both self-reports and neural activation between age groups. The two groups did not differ in years of education, trait measures of affect, personality variables or in blood oxygen level–dependent (BOLD) signal amplitude as assessed by a visual localizer task (all p > 0.05).
Five additional subjects were recruited but excluded prior to analysis due to an imaging artifact (73 y.o. male), excessive head motion (23 y.o. male), vision trouble (71 y.o. male), medication (75 y.o. male), and inability to follow instructions (79 y.o. female).  Participants were recruited from the San Francisco Bay Area and then followed up by laboratory personnel for a complete phone interview to determine eligibility. The phone interview included questions relevant to their safety and their history of physical or mental disorders (specifically stroke and neurological damage, history of heart failure, or prescription medicine shown to interfere with the blood oxygen level dependent signal, e.g., either psychiatric or cardiac). If eligible, participants completed two sessions. In the first session, participants completed a questionnaire packet, a cognitive test battery, a thorough explanation of the scanning procedures, and a practice version of the MID task. In the second session, participants engaged in the MID task while undergoing fMRI. In addition to earnings on the task, participants were paid $20/hour for their participation.
Prior to being scanned, participants received a verbal description of the task, and completed a 15-minute practice version. Participants were also shown the money that they could earn by performing the task successfully in the scanner, and all reported believing that they would receive cash based on their performance at the end of the experiment. Once in the scanner, anatomical scans were acquired. Participants then engaged in two 16-minute blocks of the incentive task and one 6-minute block of a visual localizer task during functional scan acquisition. After the scan, in addition to affective ratings, participants estimated the ratio of gain cues to lose cues (no age differences were found in ratio estimates).
 
2.2.2 Questionnaire Measures 
 
A demographics questionnaire assessed the age, marital status, current and previous occupational status, level of income, number of years of education, and ethnicity of the participants.  Several individual difference measures were included to ensure that between-group differences in self-reported affect or BOLD activation were not due to baseline group differences in trait affect or personality. The trait version of the Positive and Negative Affect Schedule (PANAS-T) (Watson, Clark, & Tellegen, 1988) was used to assess the extent to which participants experienced each of 22 emotional descriptors on a regular basis. A measure of physical health, the Wahler Physical Symptom Inventory (WPSI) (Wahler, 1973), asked participants to indicate how often they are bothered by each of 42 physical symptoms. The Future Time Perspective (FTP) scale (Carstensen & Lang, 1995) is a 10-item self-report measure that assesses how much time people feel they have left in their lives. A 60-item short form of the Neuroticism-Extroversion/Introversion-Openness-to-Experience Personality Inventory (NEO-SF) (Costa & McCrae, 1992) asked participants to indicate their level of endorsement of each of the statements related to commonly-assessed personality traits. The 5-item Subjective Well-being and Satisfaction with Life Scale (SWLS) (Diener, Emmons, Larsen, & Griffin, 1985) assessed general overall satisfaction with life. 
 
2.2.3 Neuropsychological Battery
 
The Mini-Mental Status Exam (MMSE) (Folstein, Folstein, & McHugh, 1975) was administered to all participants as a screen for dementia. Three subtests from the Wechsler Adult Intelligence Scale Third Edition (WAIS-III) (Wechsler, 1997) with well-validated ranges for older adults were administered to each participant. The WAIS-III Digit Span test requires that participants repeat numerical strings forward and backward. It is considered a measure of working memory and correlates well with general intelligence. The WAIS-III Digit Symbol test requires participants to match symbols with letters as quickly and accurately as possible in a 120-second period. The WAIS-III Vocabulary test requires that participants provide definitions for words presented in both written and spoken form, and correlates well with verbal intelligence. Two subtests, Verbal and Category Fluency, of the Delis-Kaplan Executive Function System (Delis, Kramer, Kaplan, & Holdnack, 2004) were administered. The Verbal Fluency (FAS) subtest requires that participants name as many words as possible beginning with a given letter (first F, then A, then S) in a 60-second period. The similar Category Fluency subtest requires that participants name as many words as possible that fall into the given category (animals) in a 60-second period. The Trail Making Test (TMT) from the Halstead-Reitan Neuropsychological Test Battery (Reitan, 1993) has two parts (A & B) which are both timed until completion. The first part (Trails A) requires that participants sequentially connect 25 encircled numbers on a standard sheet of paper. The second part (Trails B) requires that participants connect a series of numbers and letters in an alternating pattern. Trails B is considered to be a good indicator of general frontal lobe cognitive function.
 
2.2.4 Visual Localizer Task
 
Collection of fMRI data in older adults raises many methodological issues, which necessitate careful sampling and measurement. Even assuming good health, the hemodynamic response of older individuals has been shown to be similar but more variable than that of younger adults in cortical regions (D'Esposito, Deouell, & Gazzaley, 2003). Thus, a visual localizer task was included to examine potential age differences in individual hemodynamic response functions (HRFs). The task consisted simply of responding with a button press to flickering checkerboard stimuli that were presented for 2 s, separated by random interstimulus intervals ranging from 2–38 s. Timecourses of activation were extracted from voxels in primary visual cortex (V1) in individual participants. A multivariate GLM revealed no significant effect of age on signal change in this region, F1, 11 = 1.214, p = .371. Additionally, it should be noted that none of the participants included in this study have abnormally shaped HRFs in this visual cortical region as has been found previously in fMRI studies of older adults. 
 
2.2.5 MID task
 
A canonical version of the MID task (Knutson, et al., 2003) was modified in two ways. First, the display duration of each frame of the task was lengthened to accommodate differences in vision and reading time among younger and older participants. Second, the traditionally used abstract symbolic cues (that is, closed circles and open squares) were replaced with literal symbolic cues (Win $0.00, Win $0.50, Win $5.00, Lose $0.00, Lose $0.50, Lose $5.00) that explicitly stated whether the trial was a potential gain or loss trial as well as the amount of money at stake. Across both runs, the entire task included 180 10-s trials. During each MID trial, participants viewed one of six different cues displaying the amount of money that could be gained or lost on that trial (anticipation phase). If the participant responded quickly enough to a subsequent target, he or she either gained or avoided losing money (outcome phase) (Figure 2-1). The six trial types were each presented 30 times (15 times per run) in an individually randomized order for each participant. The hit and miss rate for individual participants was manipulated by altering the average duration of the target with an adaptive timing algorithm that was originally set to the individual’s mean reaction time in pre-scan practice, and then followed his or her performance across the scanned blocks, such that the individual would successfully hit the target on approximately 66% of the trials for each cue type. Individual functional volume acquisitions were time-locked to cue onsets using a drift adjustment algorithm, and thus coincided with each frame of the trials. After the MID task scan, participants rated their affective reactions to each of the cues on seven-point Likert scales (that is, valence from ‘very negative’ to ‘neutral’ to ‘very positive’ and arousal from ‘not at all aroused’ to ‘highly aroused’). Hits were calculated as the percentage of correct responses per condition (that is, the button press occurred during target presentation). Ratings of cue-elicited valence and arousal were mean-deviated within individual across cues and plotted in a Euclidean two-dimensional space. These dimensions were then rotated by 45° to derive measures of positive arousal (PA; PA = arousal/√2 + valence/√2) and negative arousal (NA; NA = arousal/√2 – valence/√2) (Knutson, et al., 2005). Actual hit rate, cue-elicited PA for gain cues and cue-elicited NA for loss cues were analyzed with mixed-model analyses of variance (ANOVAs) with incentive valence (gain, loss) and magnitude ($0.00, $0.50, $5.00) as within-subject factors, and age (younger, older) as the between-subject factor. In the event of a significant interaction, PA and NA ratings were compared across all magnitude conditions for each group with within-subject ANOVAs (corrected for four comparisons, p < 0.013) and direct comparisons were made between groups for each cue with between-subject t-tests (corrected for six comparisons, p < 0.008). Further analyses isolated differences within groups in both valence and arousal using t-tests (corrected for eight comparisons, p < 0.006). 
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Figure 2-1. MID task schematic. Gain trials (top row) and loss trials (bottom row). Participants saw a cue (Cue, 2000 ms), were instructed to focus on a fixation cross while waiting for a variable anticipatory delay period (Fixation, 2000–2500 ms), responded with a button press to a solid white star (Target, 100-400 ms), fixated on a cross (Fixation, 2000 ms minus Target duration), received feedback (Feedback, 2000 ms), and focused again on a fixation cross (Fixation, 2000 ms).
 
2.2.6 fMRI acquisition
 
Imaging of the MID task was done using a 1.5-T General Electric MRI scanner with a standard quadrature head coil. Twenty-four 4-mm-thick slices (in-plane resolution, 3.75 x 3.75 mm; no gap) extended axially from the midpons to the top of the skull; this volume provided adequate spatial resolution of subcortical regions of interest (for example, midbrain, ventral striatum) while omitting only the base of the cerebellum or crown of the skull in some participants. Functional scans of the entire brain were acquired every 2 s (repetition time, 2 s) with a T2*-sensitive in-out spiral pulse sequence (echo time, 40 ms; flip, 90°) specifically designed to minimize signal dropout at the base of the brain (Glover & Law, 2001). High-resolution structural scans were subsequently acquired using a T1-weighted spoiled gradient recalled acquisition in steady state sequence (repetition time, 100 ms; echo time, 7 ms; flip, 90°), which facilitated subsequent localization and coregistration of functional data. 
 
2.2.7 Whole Brain fMRI Analyses
 
Analyses focused on changes in brain activation during anticipation (that is, after participants saw cues but before they responded to targets) and outcome (that is, after participants received feedback about their success and monetary gains/losses) for both gain and loss trials. All analyses were conducted using Analysis of Functional Neural Images software (Cox, 1996). For preprocessing, voxel time series were concatenated across runs, sinc interpolated to correct for non-simultaneous slice acquisition within each volume and corrected for motion. Visual inspection of motion correction estimates confirmed that no subject’s head moved more than 2 mm in any dimension from one volume acquisition to the next. Data were then bandpass filtered to admit frequencies between 10 and 90 s, and the percentage signal change was calculated for each voxel with respect to the mean activation over the entire experiment.
Preprocessed time series data for each individual were analyzed with multiple regression (Neter, Kutner, Nachtsheim, & Wasserman, 1996). The regression model consisted of a set of four orthogonal regressors of interest: gain ($0.50, $5.00) versus non-gain ($0.00) anticipation, loss ($0.50, $5.00) versus non-loss ($0.00) anticipation, gain (hit: $0.50, $5.00) versus non-gain (miss: $0.50, $5.00) outcome, and non-loss (hit: $0.50, $5.00) versus loss (miss: $0.50, $5.00) outcome. Additional covariates included two orthogonal regressors highlighting the periods of interest (anticipation and outcome), six regressors describing residual motion and six regressors modeling baseline, linear and quadratic trends for each experimental session. Regressors of interest were convolved with a gamma-variate function that modeled a prototypical hemodynamic response (Cohen, 1997) before inclusion in the regression model. Maps of t-statistics representing each of the regressors of interest were transformed into z-scores, slightly spatially smoothed to account for anatomical variability (kernel full-width half-maximum 4 mm), resampled at 2 mm3 and spatially normalized by warping to Talairach space.
Statistical maps were then generated for the younger and older age groups using one-sample t-tests. Thresholds for statistical significance within the predicted volumes of interest (that is, striatum, anterior insula and mesial prefrontal cortex) were determined by a local small-volume correction (six 6-mm-diameter spheres or approximately ten 4-mm3 voxels corrected at p < 0.05, yielding a threshold Z of 2.81, p < 0.005, uncorrected) and required a minimum cluster of eight face-to-face, contiguous 2-mm3 resampled voxels. Thresholds for statistical significance outside of the predicted volumes of interest were set using a global family-wise error rate that corrected for gray matter volume in subcortical and mesial prefrontal cortical regions (approximately 500 4-mm3 voxels corrected at p < 0.05, yielding a threshold Z of 3.89, p < 0.0001, uncorrected) and required a minimum cluster of eight face-to-face, contiguous 2-mm3 resampled voxels.
 
2.2.8 Volume of Interest Definition and Analyses
 
Group analyses consisted of two types: localization and decomposition. For the localization analyses, direct t-tests compared contrast coefficient maps within each group. The goal of the localization analysis was to verify that a priori regions of interest were activated in both age groups, as well as to identify new regions that might be correlated with regressors of interest for one group but not the other. For the decomposition analyses, VOIs were specified by imposing 6-mm-diameter spheres at foci defined a priori in regions of interest in the ventral striatum (VS), medial caudate (MCAUD), anterior insula (AINS) and mesial prefrontal cortex (MPFC) (Knutson, et al., 2003; Kuhnen & Knutson, 2005). Care was taken to ensure that data from VOIs included only gray matter for each individual. Activation time courses were extracted and averaged from these VOIs by trial type. Peak anticipatory signal change (at a 6-s lag) was then compared using mixed-model ANOVAs with incentive valence (positive, negative), magnitude ($0.00, $0.50, $5.00) and subsequent outcome (hit, miss) as within-subject factors, and age group (younger, older) as the between-subject factor for each VOI. Outcome was included in the model to verify that signals extracted during the anticipatory period were not related to outcome activation. In the event of a significant interaction, values were compared across incentive and nonincentive conditions for each group using within-subject ANOVAs (corrected for four comparisons, p < 0.013). Peak outcome signal change (at a 6-s lag) was also compared using mixed-model ANOVAs with incentive valence (positive, negative), magnitude ($0.00, $0.50, $5.00) and outcome (hit, miss) as within-subject factors, and age group (younger, older) as the between-subject factor for each VOI. In the event of a significant interaction, values were compared across hits and misses for incentive conditions (gain $0.50, $5.00 versus fail to gain $0.50, $5.00; avoid loss $0.50, $5.00 versus lose $0.50, $5.00) for each group with within-subject t-tests (corrected for four comparisons, p < 0.013). No direct tests between groups for each of the individual six trial types were performed to avoid confounding differences in hemodynamic modulation between age groups as suggested by a recent review of BOLD imaging and aging (Gazzaley & D'Esposito, 2005). Therefore, post hoc VOI analyses for both anticipation and outcome focused on linear effects within groups.
VOI spheres were manually adjusted for individual participants to account for potential anatomical variability between the age groups not corrected for by the Talairach warping procedure and in order to avoid partial voluming of functional signal. The definition procedure began with a priori coordinates selected from previous data sets (Knutson, et al., 2001a; Knutson, et al., 2003; Knutson, et al., 2000; Kuhnen & Knutson, 2005), which could be shifted in two dimensions within a 10 mm x 10 mm constrained region along at least one fixed plane. An algorithm was created for each VOI.  For the VS, the start coordinates were +/–11, 12, 0 (Knutson, et al., 2001a) with the coronal and axial planes fixed.  If imposing a 6 mm diameter sphere resulted in sampling of the neighboring ventricle, the sphere was shifted within 10mm right/left. However, for the VS, the a priori coordinates were compatible with the anatomy of nearly participant (only two participants required shifting to the right). For the MCAUD, the start coordinates were +/–9, 13, 9 with the coronal plane fixed.  If imposing a 6 mm diameter sphere resulted in sampling of the neighboring ventricle, the sphere was shifted within 10mm right/left or superior/inferior. For the MCAUD, over half of the participants required shifting to the left and only one participant requiring a 1mm shift inferior. For the AINS, the start coordinates were +/–39, 19, 7 (Knutson, et al., 2001a; Kuhnen & Knutson, 2005) with the sagittal plane fixed. If imposing a 6 mm sphere resulted in sampling of the neighboring CSF, the sphere could be shifted within 10 mm right/left or superior/inferior. All but 4 participants required at least a 1 mm shift in at least one plane. For the MPFC, the start coordinates were +/–1, 53, –6 (Knutson, et al., 2003) with the coronal plane fixed. If imposing a 6 mm sphere resulted in sampling of the neighboring CSF, the sphere could be shifted within 10 mm right/left or superior/inferior. All 24 participants needed at least a 1 mm shift in at least one plane.
Correlational analyses assessed the relationship between self-reported anticipatory affect and anticipatory activation in the ventral striatum, medial caudate and anterior insula. A measure of cue-elicited affect change (PA, NA, valence and arousal) was computed by averaging self-reports for incentive cues ($0.50, $5.00) and subtracting self-reports for non-incentive cues ($0.00). Similarly, a measure of anticipatory activation change (ventral striatum, medial caudate and anterior insula) was computed by averaging the activation for incentive cues ($0.50, $5.00) and subtracting activation for non-incentive cues ($0.00). The correlations between these change scores as reported are one-tailed as a result of our a priori directional hypotheses that activation during gain would correlate with PA and activation during loss would correlate with NA.
 
2.3 Results
 
2.3.1 Self-Report and Neuropsychological Measures
 
Younger adults reported having a more expansive future time perspective, F1, 22 = 14.414, p = .001, than older adults. Younger adults also performed better than older adults on the Digit Symbol task, F1, 22 = 28.197, p < .0005, Category Naming, F1, 22 = 4.958, p < .05, and Trail Making Test, F1, 22 = 5.590, p < .05. 
 
2.3.2 MID Task Performance
 
The two groups did not differ in cumulative earnings on the task, t22 = –0.058, p = .95, with younger adults earning an average of $44.67±$7.58 (mean±sd) and older adults earning an average of $44.83±$6.58. 
 
2.3.3 MID Task Anticipatory Affect Ratings
 
Younger and older adults reported similar subjective responses during anticipation of gains, but differed during anticipation of losses. An ANOVA conducted on cue-elicited affect yielded a main effect of magnitude, F2, 21 = 77.124, p < .0005, which was qualified by a two-way interaction of valence and magnitude, F2, 21 = 7.342, p < .005, indicating that high magnitude gain cues increased positive arousal (PA) and high magnitude loss cues increased negative arousal (NA) across all participants. Between-group comparisons of PA ratings for gain cues and NA ratings for loss cues revealed that younger adults reported higher levels of NA for Lose $5.00 cues than older adults, t22 = 5.899, p < .008. Affect ratings for the other five cues did not differ between groups at the threshold corrected for multiple comparisons (all p > .008). 
For both age groups, within-subject t-tests (corrected for 8 comparisons, p < .006) indicated that arousal was greater for $5.00 than $0.00 for both gain (young: t11 = 7.60, p < .006; older: t11 = 6.09, p < .006) and loss cues (young: t11 = 7.60, p < .006; older: t11 = 6.38, p < .006).  Both age groups indicated that valence was greater for gain $5.00 than gain $0.00 cues (young: t11 = 6.63, p < .006; older: t11 = 6.09, p < .006). For younger adult participants, a within-subject t-test indicated that valence was lower (i.e., more negative) for lose $5.00 than lose $0.00 cues, t11 = –6.63, p < .006. However, older adult participants did not endorse low valence associated with loss cues, and so within-subject t-tests of valence revealed no significant differences between lose $5.00 and lose $0.00 cues, t11 = –0.90, p = .38. See Figure 2-2 for a two-dimensional plot of raw valence and arousal ratings.
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Figure 2-2. Post-task cue ratings. Younger adults self-report increasing negative valence and arousal with loss cues and positive valence and arousal with gain cues in the anticipatory period. Older adults report increasing positive valence and arousal with gain cues, but only show increases in arousal and no change in valence as the magnitude of loss cues increases. Points are plotted according to group means (x,y = valence, arousal). X-error bars correspond to standard error of valence means, and Y-error bars to standard error of arousal means.
 
An analysis of variance (ANOVA) conducted on cue-elicited affect yielded a significant three-way valence (gain, loss) by magnitude ($0.00, $0.50, $5.00) by age (young, old) interaction, F2,21 = 9.142, p < 0.001, indicating that the younger and older adults differed in their ratings of gain and loss cues. Within-group ANOVAs (corrected for four comparisons, P < 0.013) revealed significant main effects of magnitude on positive arousal ratings for gain cues, F2,10 = 34.59, p < 0.0005, and negative arousal ratings for loss cues, F2,10 = 39.492, p < 0.0005, in younger adults. Older adults showed a comparable magnitude effect on positive arousal ratings for gain cues, F2,10 = 29.564, p < 0.0005, but a weaker, albeit still significant, magnitude effect on negative arousal for loss cues, F2,10 = 9.825, p < 0.013. Between-group comparisons indicated that younger adults reported greater negative arousal for large loss cues ($5.00) than did older adults, t22 = 5.90, p < 0.008, but ratings for the other cues did not significantly differ (all p < 0.008). 
 
2.3.4 Neural Activity During Anticipation
 
Localization analyses confirmed that during gain anticipation, both younger and older adults showed significant ventral striatal, medial caudatal and anterior insular activation at the global threshold (p < 0.0001). Anticipation of gain activated foci in several striatal regions, including the caudate and putamen for both age groups.  Additional regions activated by both groups included the anterior insula, thalamus, anterior cingulate, and medial (mesial prefrontal cortex) and middle frontal gyri. While older adults showed a reduced spatial extent for clusters of activations in the striatum, they also showed more widespread activation than younger adults. Older adults showed additional clusters of activation in both frontal and parietal cortices, including more superior regions of middle and medial frontal gyri, inferior parietal lobule, and precuneus.
 
Table 2-1   Comparison of older versus younger adults (Global threshold: p < .0001 uncorrected; SVC: p < .005 uncorrected). Volume units are micro-liters.
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During loss anticipation, younger adults showed significant medial caudatal and anterior insular activation at the global threshold (p < 0.0001), but showed ventral striatal activation only at the small-volume-corrected threshold (p < 0.005). Older adults showed anterior insular activation only at the small volume- corrected threshold (p < 0.005). Anticipation of loss activated foci in the anterior insula, inferior frontal gyrus, medial caudate, and midbrain in younger adults at the global threshold and the ventral striatum at the small volume corrected threshold. Anticipation of loss activated foci in the middle frontal gyrus, anterior cingulate, and precentral gyrus in older adults at the global threshold, and bilateral clusters in the anterior insula emerged at the small volume corrected threshold.
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Figure 2-3. Between-group t-tests of loss versus non-loss anticipation contrast maps (older adults > younger adults; SVC, z > 2.81; P < 0.005 uncorrected). Negative z-scores showed less activation for older adults in both the anterior insula and medial caudate. S value for each axial image is listed in the upper right (S = –2 through anterior insula; S = 9 through striatum).
 
Between-group t-tests revealed no differences during gain anticipation, and also showed that younger adults had greater activation of medial caudate and anterior insula during loss anticipation at the small-volume-corrected threshold (p < 0.005) (Table 2-1, Figure 2-3). Volume of interest (VOI) analyses confirmed that although both younger and older adults activated the ventral striatum, medial caudate and anterior insula during gain anticipation, only younger adults showed significant caudate and insula activation during loss anticipation.
A mixed-model ANOVA of anticipatory activation in the right ventral striatum yielded a significant interaction of valence and magnitude, F2,21 = 3.916, p < 0.05, but a non-significant interaction of valence, magnitude and age, F2,21 = 1.50, p < 0.25, suggesting that activation in the ventral striatum was greater for gain than for loss anticipation, and did not differ between younger and older participants. Cue-elicited affect was also correlated with activation in the ventral striatum across individuals. Self-reported positive arousal correlated with activation during gain anticipation, r = 0.42, p < 0.05, but self-reported negative arousal did not correlate with activation during loss anticipation, r = 0.21, p < 0.16. 
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Figure 2-4. BOLD activation extracted from the medial caudate (top row) and anterior insula (bottom row) at anticipation. An age by valence by magnitude interaction shows that younger adults had increasing activation for both gain and loss cues in the anticipatory period, but that older adults had increasing activation for gain, but not loss cues. Error bars represent s.e.m.
 
A mixed-model ANOVA of anticipatory activation in the left caudate yielded a significant three-way interaction of valence, magnitude and age, F2,21 = 5.35, p < 0.05 (Figure 2-4). Within-group ANOVAs (corrected for four comparisons, p < 0.013) revealed significant linear main effects of magnitude on caudate activation for gain, F2,10 = 8.44, p < 0.001, and loss cues, F2,10 = 20.40, p < 0.0005, in younger adults. 
Older adults, however, showed a significant linear magnitude effect for gain cues, F2,10 = 15.82, p < 0.005, but not loss cues, F2,10 = 1.07, p = 0.38. Cue-elicited affect was also correlated with activation in the left caudate across individuals. Self-reported positive arousal did not correlate with caudatal activation during gain anticipation, r = –0.01, p = 0.47, but self-reported negative arousal correlated with caudatal activation during loss anticipation, r = 0.42, p < 0.05.
A mixed-model ANOVA of anticipatory activation in the right insula yielded a significant three-way interaction of valence, magnitude and age, F2,21 = 3.95, p < 0.05 (Figure 2-4). Within-group ANOVAs (corrected for four comparisons, p < 0.013) revealed significant linear main effects of magnitude on insula activation for gain, F2,10 = 14.549, p < 0.005, and loss cues, F2,10 = 20.571, p < 0.005, in younger adults. Older adults, however, showed a significant linear magnitude effect for gain cues, F2,10 = 71.351, p < 0.0005, but not loss cues, F2,10 = 1.546, p = 0.24. Cue-elicited affect was also correlated with activation in the right insula across individuals. Self-reported positive arousal correlated with insular activation during gain anticipation, r = 0.41, p < 0.05, and self-reported negative arousal correlated with insular activation during loss anticipation, r = 0.38, p < 0.05.
 
2.3.5 Neural Activity During Outcomes
 
2.3.5.1 Gain ($0.50, $5.00) versus fail to gain ($0.50, $5.00) outcomes
 
No significant clusters emerged for either age group at the global threshold. At the small volume corrected threshold, both age groups showed activation in left mesial prefrontal cortex and ventral striatum. Visual inspection of activation timecourses extracted from VOIs reveals that this effect was driven by decreased MPFC and VS activation in response to gain miss outcomes (instead of increased activation in response to gain hits).
 
2.3.5.2 Avoid loss ($0.50, $5.00) versus loss ($0.50, $5.00) outcomes
 
No significant clusters emerged for either age group at the global threshold. At the small volume corrected threshold, both age groups showed activation in the ventral striatum for loss avoidance. Visual inspection of activation timecourses extracted from the VOI revealed that this effect was driven by decreased VS activation in response to miss outcomes (instead of increased activation in response to hits / loss avoidance). Younger adults showed an additional region of activation in the insula and older adults showed an additional region of activation in the MPFC. 
 
2.3.5.3 Older vs. younger adults
 
For gain outcomes, younger adults showed more deactivation in the left insula. For loss avoidance outcomes, older adults showed more activation in the left medial frontal gyrus, right ventral striatum (caudate/putamen), and right hypothalamus, while younger adults showed more deactivation in the right insula. All regions only met the small volume corrected threshold, with the exception of the hypothalamus in loss avoidance, which met the global threshold.
 
2.3.5.4 Outcome activation in the MPFC
 
A mixed-model ANOVA with valence (2), magnitude (3), and outcome (2) as within-subject factors and age (2) as the between-subject factor of outcome activation (extracted at TR 8) averaged within 6 mm diameter spheres placed in the left mesial prefrontal cortex yielded a main effect of outcome, F1, 22 = 10.269, p < .005. There were no main or interaction effects of age suggesting that the two groups did not differ in activation at outcome.  Within-group paired samples t-tests were not significant at the threshold corrected for multiple comparisons (p < .013), but did reveal non-significant trends toward a difference between $0.50/$5.00 successful gain outcomes and $0.50/$5.00 miss gain outcomes for younger adults, t11 = 2.825, p = .017, and older adults, t11 = 2.027, p = .068.  Activation was not significantly greater for $0.50/$5.00 loss avoidance outcomes than $0.50/$5.00 loss outcomes for either younger, t11 = 0.236, p = .818, or older adults, t11 = 2.180, p = .052, as in prior research.
 
2.3.5.5 Outcome activation in the VS
 
A mixed-model ANOVA with valence (2), magnitude (3), and outcome (2) as within-subject factors and age (2) as the between-subject factor of outcome activation (extracted at TR 8) averaged within 6 mm diameter spheres placed in the right VS yielded significant main effects of magnitude, F2, 21 = 7.732, p < .005, and outcome, F1, 22 = 35.11, p < .0005, and a two-way magnitude by outcome interaction, F2, 21 = 5.717, p < .05. There were no main or interaction effects of age suggesting that the two groups did not differ in activation at outcome. Within-group paired samples t-tests (corrected for 4 comparisons, p < .013) revealed greater activation for $0.50/$5.00 successful gain outcomes than $0.50/$5.00 miss gain outcomes for both younger, t11 = 3.128, p < .013, and older adults, t11 = 3.821, p < .013.  Activation was also greater for $0.50/$5.00 loss avoidance outcomes than $0.50/$5.00 loss outcomes for both younger, t11 = 4.069, p < .013, and older adults, t11 = 3.265, p < .013.
 
2.3.5.6 Outcome activation in the MCAUD
 
A mixed-model ANOVA with valence (2), magnitude (3), and outcome (2) as within-subject factors and age (2) as the between-subject factor of outcome activation (extracted at TR 8) averaged within 6 mm diameter spheres placed in the left MCAUD yielded no significant main or interaction effects of outcome (all p > .05).
 
2.3.6 Age Differences in Hemodynamics
 
Collection of fMRI data in older adults raises many methodological issues. Even assuming good health, the hemodynamic response of older individuals has been shown to be similar but more variable than that of younger adults in cortical regions (Aizenstein, et al., 2004; D'Esposito, et al., 2003; D'Esposito, Zarahn, Aguirre, & Rypma, 1999; Huettel, Singerman, & McCarthy, 2001). Thus, a visual localizer task was included to examine potential age differences in individual hemodynamic response functions (HRFs). The task consisted simply of responding with a button press to flickering checkerboard stimuli that were presented for 2 s, separated by random interstimulus intervals ranging from 2-38 s. Timecourses of activation were extracted from voxels in primary visual cortex (V1) in individual participants. A multivariate GLM revealed no significant effect of age, F1, 11 = 1.214, p = .371 (Figure 2-6). Additionally, it should be noted that the older adults included in this study have normally shaped HRFs in the visual cortex and in the primary regions of interest (see timecourse plots in the supplementary materials of Samanez-Larkin, et al., 2007).
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Figure 2-5. Timecourses of activation from individual participants (young: orange, old: blue) extracted from voxels in primary visual cortex (V1) during a visual localizer task (a). Mean-averaged timecourses by group (b). Errors bars: s.e.m.
 
2.4 Discussion
 
Neither self-reported affect nor brain activation data yielded evidence of a difference between younger and older adults during gain anticipation, but both suggested a difference between these groups during loss anticipation. Our neuroimaging findings add at least two significant contributions to our self-report findings. First, little is presently known about mesolimbic function in older adults during basic incentive processing tasks, and functional neuroimaging affords a first glimpse at how activation in these regions may be affected by age. Second, many behavioral studies suggest that healthy older adults report reduced experience of negative emotions. The present findings provide physiological evidence suggesting that these age differences may not purely reflect biases in self-reports, although future research will have to further clarify the relationship between neural activation and self-reported emotion. 
The lack of differences between younger and older adults in ventral striatal activation during gain anticipation may seem surprising in light of documented age-related impairments on reward reversal learning tasks. For instance, relative to younger adults, a previous study found reduced ventral striatal activation in older adults engaged in a reward reversal learning task (Marschner, et al., 2005). In that study, however, older subjects also performed more poorly on the task (Mell, et al., 2005). In the present experiment, the simpler design of the MID task elicited equivalent performances from younger and older adults. Together, these findings suggest that ventral striatal activation during reward anticipation may not be as compromised by age as are the neural substrates recruited in the course of reversing reward associations (for example, ventrolateral prefrontal cortex (Garavan, Hester, Murphy, Fassbender, & Kelly, 2006)). Future research will have to specifically disentangle reward anticipation from reward reversal to fully test this possibility.
Although older adults did not differ significantly from younger adults during gain anticipation, they did differ during loss anticipation. Specifically, affective data indicated that older adults experienced less negative arousal, and neural data indicated that they showed less activation of the insula and caudate when exposed to loss cues. It is unlikely that the reduced neural activation during loss anticipation was a result of a general lack of response in these brain regions in older adults, as the same regions showed significant activation during gain anticipation. An asymmetry between positive and negative emotional experience has been documented in older adults in a number of behavioral studies using a variety of tasks (Carstensen & Mikels, 2005). Interpreted through the lens of socioemotional selectivity theory, age-related sparing of positive emotional experience may be related to efforts to optimize emotional experience as one approaches the end of life (Carstensen, 2006). One aspect of this optimization may involve reducing negative arousal during anticipation of negative events. Notably, older adults did not show reduced neural responsiveness to loss outcomes themselves, as both older and younger adults had similar responses to loss outcomes. Although the present findings cannot establish whether reduced neural and affective responsiveness to loss anticipation results from effortful processing on the part of older adults, these findings are consistent with other reports indicating that older adults experience reduced negative emotion (Kisley, et al., 2007; Wood & Kisely, 2006).
Some patterns in the present data did not strictly conform to prior findings using the MID task. Specifically, younger adults (but not older adults) showed increased ventral striatal activation to both anticipated gains and losses (but only at a small volume corrected threshold). This may be due to modifications that made the MID task more amenable to older adults, including introduction of literal rather than abstract cues and three rather than four levels of incentive magnitude. However, even in the present study, the linear effect of loss anticipation on ventral striatal activation was not as robust as that of gain anticipation in younger adults. The similarity in striatal activation during anticipation of gains and losses in the younger adults observed is more consistent with activation patterns observed in medial caudate regions in previous studies (Bjork, et al., 2004; Knutson, et al., 2001a; Knutson, et al., 2000). Additionally, the results at outcomes did not strictly conform to prior findings using the MID task. Gain versus non-gain outcomes did not activate mesial prefrontal cortex at corrected significance levels, nonetheless, all analyses suggested such an effect at trend levels, suggesting that the present design may have lacked power to detect this effect (Knutson, et al., 2003).
A prevalent concern in cross-sectional fMRI studies of older adults involves potential baseline differences in the shape of the hemodynamic response functions (HRFs) (e.g., due to cardiovascular confounds) (Gazzaley & D'Esposito, 2005). A basic perceptual task was also implemented in the present study, but analyses revealed no age differences in the amplitude of HRFs between age groups.  Thus, even if differing HRFs were of concern, this should primarily bias localization analyses (for which fit statistics depend on regressors convolved with a canonical HRF) and not statistical tests comparing modulation of raw signal peaks extracted from individuals’ volumes of interest between conditions. Of additional potential concern, age-related differences in activation may result from increased gray matter atrophy and white matter demyelination in older adults. Specifically, recent reports have shown that both the insula and caudate undergo substantial atrophy with age (Raz, 2005). One could infer that structural degeneration in these regions should then uniformly degrade all patterns of activation in the older adults. However, while both regions were less activated during loss anticipation in older adults, they showed no significant differences in either region during gain anticipation.  Additionally, care was taken to ensure that data from volumes of interest only included gray matter for each individual.
Although this is the first event-related fMRI study of incentive anticipation in older adults, the pattern of results is compatible with findings from other research.  Specifically, the reduced spatial extent and more diffuse patterns of activation in older adults are consistent with findings in other neuroimaging studies of aging (Gazzaley & D'Esposito, 2005; Madden, et al., 2005). Theorists have debated whether more widespread activation reflects functionally adaptive reorganization with age, compensation in response to a decline in function, or both (Cabeza, 2002; Reuter-Lorenz, 2002).  Since performance was equated across groups, the present study cannot address the plausibility of these alternative interpretations. However, the increased activation in parietal cortex accompanying a reduced extent of activation in the striatum during gain anticipation is consistent with the prior findings indicating that increased parietal activation in older adults correlates with performance on a category learning task which also recruits the caudate (Fera, et al., 2005). Future work will further investigate the role of these parietal activations in incentive processing, as well as choice.
Although an asymmetry in loss anticipation may enhance well-being in older adults, it may also engender biases in certain decision-making scenarios. For example, a recent study provides evidence for a diminished framing effect in the loss frame for older adults (Mikels & Reed, 2009). Findings from this line of basic research may have implications for scientists’ understanding of how processes underlying decision making change with age, and might eventually facilitate the identification of markers for suboptimal decision making in older adults (Denburg, et al., 2005).



CHAPTER 3
EXPERIMENT 2: ANTICIPATORY AFFECTIVE BIASES AND SUBSEQUENT LEARNING
 
3.1 Introduction
 
Detecting and avoiding threats arguably are the most basic of survival skills. In humans, avoidance learning is necessary not only to ensure survival in the face of basic threats (e.g., predators, rotten food), but also to promote optimal responses to more abstract threats in social (e.g., enemies) and economic (e.g., risky investments) domains. Although the ability to anticipate and avoid danger is critical to survival, excessive anticipatory anxiety may contribute to psychopathology. Scientists have recently used brain-imaging techniques with enhanced spatial and temporal resolution to characterize neural circuitry implicated in anticipation of threats. One region that has consistently been associated with anticipation of threat is the anterior insula (Seymour, et al., 2007b), a region of polymodal association cortex tucked deep within the lateral sulcus between the lateral prefrontal cortex and striatum. Activation of the anterior insula has been observed not only in response to emotionally negative events, but also during anticipation of those events (Kim, et al., 2006; Nitschke, Sarinopoulos, Mackiewicz, Schaefer, & Davidson, 2006; Pessiglione, et al., 2006; Samanez-Larkin, et al., 2007; Seymour, et al., 2005). In addition, anticipatory insula activation is associated with (Paulus, Rogalsky, Simmons, Feinstein, & Stein, 2003) and predicts (Kuhnen & Knutson, 2005) behavioral avoidance of risky options in decision-making tasks.
Whereas insula activation exhibits within-individual variation related to task demands, chronic insular activation differs between individuals, and has been proposed as an endophenotypic marker of anxiety proneness (Paulus & Stein, 2006). Altered insular sensitivity has been observed in several clinical populations with anxiety disorders, including simple phobia, specific phobia, social phobia, posttraumatic stress disorder, obsessive-compulsive disorder, panic disorder, and generalized anxiety disorder (for a review, see Paulus & Stein, 2006). Moreover, studies of healthy, nonclinical samples have demonstrated significant relationships between insular sensitivity and self-report measures of anxiety, such as neuroticism and harm avoidance (Paulus, et al., 2003; Stein, Simmons, Feinstein, & Paulus, 2007). In addition, animal studies have shown that specific lesions to insular cortex disrupt taste-aversion learning in rats (Cubero, Thiele, & Bernstein, 1999; Yamamoto, Shimura, Sako, Yasoshima, & Sakai, 1994).
Although there is converging evidence that activation of the insula plays a role in anticipatory anxiety, previous studies have not tested the functional hypothesis that anticipatory insular activation predicts learning to avoid loss. In the study reported here, we examined whether a neural index of insular sensitivity to anticipated loss would predict behavioral loss-avoidance learning several months later.
 
3.2 Methods
 
3.2.1 Subjects
 
Eleven younger (ages 19–27; 5 female, 6 male) and 12 older (ages 65–81; 6 female, 6 male) adults participated in two sessions. 
 
3.2.2 Monetary Incentive Learning (MIL) Task
 
In the first, all 23 participants played a monetary incentive delay task while undergoing functional magnetic resonance imaging (fMRI) to localize brain regions involved in the anticipation of monetary incentives. On each trial, participants viewed one of six cues (lose $0.00, lose $0.50, lose $5.00, gain $0.00, gain $0.50, gain $5.00) on a computer monitor (2 s). After a delay (2–2.5 s), a star appeared briefly (100–400 ms), and participants attempted to press a button while the star was still present on the screen. An adaptive algorithm was used to control the hit rate by setting a deadline for each of the six trial types defined by the cues, such that individuals would respond while the star was present on approximately 66% of the trials for each cue type. When participants responded in time, they received feedback (2 s) that they had avoided losing (‘‘–$0.00’’) or had gained (‘‘+$0.00,’’ ‘‘+$0.50,’’ ‘‘+$5.00’’) the amount of money indicated by the preceding cue (in the loss and gain conditions, respectively); late responses produced feedback that participants had lost (‘‘–$0.00,’’ ‘‘–$0.50,’’ ‘‘–$5.00’’) or had not gained (‘‘–$0.00’’) money (Figure 3-1). Participants were told that their goal was to earn as much money as possible, and they were subsequently paid in real cash the cumulative amount of money they had won, as indicated by the outcomes displayed. There were 30 trials for each condition, ordered randomly. 
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Figure 3-1. MIL task schematic
 
3.2.3 Brain Imaging Analyses
 
Brain-imaging analyses focused on changes in activation during anticipation (i.e., after participants saw cues but before they responded to targets) and outcome (i.e., after participants received feedback about their success and monetary losses or gains), for both loss and gain trials.We conducted a whole-brain multiple regression analysis with four independent and orthogonal regressors of interest: loss versus non-loss anticipation, gain versus non-gain anticipation, non-loss versus loss outcome, and gain versus non-gain outcome. In the second session, administered 8 to 10 months later, participants performed a monetary incentive-learning task (functional imaging data were not collected in this session). On each trial, one of three pairs of fractal images was presented. In one pair (loss avoidance), choice of one image had a .6 probability of avoiding a $1 loss, and choice of the other had a .3 probability of avoiding a $1 loss. In a second pair (gain acquisition), choice of one image had a .6 probability of yielding a $1 gain, and choice of the other image had a .3 probability of yielding a $1 gain. In a third pair, neither image was associated with monetary outcomes. Assignment of pairs to conditions and images to outcomes was counterbalanced across participants. Each trial began with a fixation cross (2 s), followed by a pair of images. Participants were given an unlimited amount of time to choose an image. The selected image was highlighted on the screen (2 s), and then the monetary outcome (‘‘–$1,’’ ‘‘$0,’’ or ‘‘+$1’’) was displayed (2 s). There were 120 trials, consisting of 40 trials in each of the three conditions. Participants were urged to earn as much money as possible by learning to choose the image with the higher probability of avoiding a $1 loss when the loss-avoidance pair was presented and the image with the higher probability of a $1 gain when the gain-acquisition pair was presented. Participants were paid in real cash the cumulative amount of money they won, as indicated by the outcomes displayed.
Performance was calculated as the percentage of correct choices (i.e., the high-probability cue) in each monetary condition (loss avoidance, gain acquisition). Unlike in the first session, hit rate was not controlled in this session. Group differences in performance were examined with independent sample t tests.
To explore the relationship between neural activation in the first session and behavioral learning in the second, we conducted a whole-brain regression analysis that identified brain regions whose activation correlated significantly with subsequent incentive learning (i.e., correlation between voxel coefficients, from the whole-brain regression model described earlier, during each condition of the incentive-anticipation task and performance in each condition of the incentive-learning task). The threshold for statistical significance was set using a global family-wise error rate (Z > 3.89, p < .0001 uncorrected) and required a minimum cluster of fifteen 2-mm3 voxels.
Confirmatory partial correlational analyses (controlling for age) were performed by extracting mean peak anticipatory signal change from regions identified in the whole-brain analysis (adjusted within individuals to ensure that regions contained gray matter only). The signal change score for each individual was computed as a measure of sensitivity (signal change on $0.50 and $5.00 trials minus signal change on $0.00 trials, separately for loss and gain).
 
3.3 Results
 
3.3.1 Behavioral Results
 
Younger and older adults did not differ in their performance in any condition of the learning task, and so these groups were combined in the following analyses. 
 
3.3.2 Neuroimaging Results
 
Results of the whole-brain analysis revealed a significant association between activation in the right anterior insula (peak-voxel Talairach coordinates: 30, 20, 3) during loss anticipation and subsequent loss-avoidance learning, Z = 4.71, prep = .999, effect size: R2 = .62 (Figure 3-2). No other brain regions showed a significant association with loss-avoidance learning.
This relationship was confirmed in a volume-of-interest analysis, which revealed a significant partial correlation (controlling for age) between percentage signal change in the anterior insula during loss anticipation and subsequent behavioral loss-avoidance learning, r = .45, prep = .897 (Figure 3-2). However, performance in gain-acquisition learning was not significantly correlated with activation in any brain region. Further, the correlation between insular activation during loss anticipation and future loss-avoidance learning (r = .45) was significantly greater, Z = 5.8, than the correlation between insular activation during loss anticipation and future gain-acquisition learning (r = –.10).
Additionally, insular activation during gain anticipation was not significantly correlated with either gain-acquisition learning or loss-avoidance learning (r = .11 and r = .04, respectively). The association between insular activation and loss-avoidance learning was specific to activation during anticipation, as insular activation in response to loss outcomes was not significantly related to learning of either gain acquisition or loss avoidance.
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Figure 3-2. Correlation between insular activation during loss anticipation and behavioral loss-avoidance learning. The illustration (a) depicts the location and corresponding statistics for the peak cluster of activation in the right anterior insula, identified during the whole-brain analysis (map threshold: p < .0005). The scatter plot (b) reveals the correlation (and corresponding statistics, controlling for age) between mean percentage signal change (x-axis) extracted from anatomically defined regions of interest in the anterior insula in individual participants and subsequent loss-avoidance learning (percentage correct; y-axis).
 
3.4 Discussion
 
This is the first demonstration that individual differences in insular sensitivity presage future loss-avoidance behavior. Because the present study localized insular sensitivity with a task devoid of performance differences, individual differences in insular sensitivity cannot be attributed to differential incentive outcomes. The results are consistent with the recent hypothesis that a loss-prediction signal (i.e., heightened anxiety during loss anticipation), rather than global sensitivity to loss (i.e., heightened anxiety during both loss anticipation and loss outcomes), can promote avoidance behavior (Paulus & Stein, 2006). The findings also provide neural evidence consistent with the historic hypothesis that a loss-prediction signal that generates increased anxiety can promote instrumental avoidance behavior (Mowrer, 1956).
Although the previous chapter focused on age differences in affective biases during incentive anticipation, the present experiment focused on individual differences within age groups. It is important to note that older adults show significantly reduced loss anticipation in the anterior insula during loss anticipation, but that relative differences in insular sensitivity predicted loss avoidance learning within both younger, r = .49, p < .05, and older, r = .45, p < .05, adult age groups in the present experiment. Although younger and older adults did not differ in their performance in any condition of the learning task, the samples of subjects included here were admittedly small for observing behavioral differences between groups. Later experiments in this dissertation will address age difference in value-based probabilistic learning with much larger samples. 
These results suggest that a neural endophenotypic marker of the affective experience of anxiety may also promote avoidance learning—a skill that can confer survival value in threatening environments. This potential functional advantage may help to explain why anxiety-related traits persist in humanity’s genetic endowment, even as environmental threats vary.



CHAPTER 4
EXPERIMENT 3: PROBABILISTIC VALUE-BASED LEARNING CORRELATES WITH ACCUMULATED ASSETS AND DEBT
 
4.1 Introduction
 
Individuals reliably differ in terms of both cognitive and emotional capacities (Bouchard, 1994). While some evidence suggests that individual differences in cognitive capacities may influence financial decision making (Burks, Carpenter, Götte, & Rustichini, 2009), less research has focused on emotional capacities. An emerging body of human research indicates that within individuals, anticipatory affect — or the emotions that people experience prior to significant outcomes — can influence subsequent choices and learning. Specifically, neural activity associated with positive arousal in the nucleus accumbens (NAcc) and medial prefrontal cortex (MPFC) precedes acceptance of risky gambles and purchase of products. On the other hand, neural activity associated with negative arousal (e.g., negative and aroused feelings like “anxiety”) in some areas of the anterior insula conversely precedes rejection of risky gambles and refusal to purchase products (Knutson & Greer, 2008). Although there may be areas of overlap in the neural processing of value, these findings suggest that there are also dissociable neurophysiological circuits that process anticipated gains and losses. 
By extension, learning about gains and losses might influence not only short-term choices but also long-term financial outcomes (Knutson & Samanez-Larkin, forthcoming). Rather than integrating assets and debt into a measure of personal wealth over time, individuals may instead maintain separate “mental accounts” (Thaler, 1980), based on a fundamental distinction between gains and losses (Kahneman & Tversky, 1979). 
This study aimed to examine potential relationships between gain and loss learning and significant life financial outcomes (i.e., assets and debt). Based on an anticipatory affect model (Knutson & Greer, 2008), we predicted that variables related to gain learning would promote acquisition of assets, while variables related to loss learning would instead promote avoidance of debt. To test these predictions, we validated self-reported measures of assets and debt with objective credit report data on a subset of subjects and assessed and controlled for potential demographic and cognitive confounds. 
 
4.2 Methods
 
4.2.1 Subjects 
 
A survey research firm initially contacted individuals who were representative of San Francisco Bay Area residents. 82 volunteers (mean age = 55, SD = 18, range = 20–85; 55 male) participated. Subjects received fixed compensation of $20 per hour, as well as cash equivalent to their total earnings in the task. Subjects were also informed that it was possible to lose money on the task and that any losses would be deducted from their total earnings. For purposes of validating self-reported assets and debt, credit reports were acquired for approximately half of the sample (n = 37). 
 
4.2.2 Monetary Incentive Learning (MIL) Task 
 
The MIL task was adapted from conventional reinforcement learning tasks to separately assess learning about gains and losses (Kim, et al., 2006; Pessiglione, et al., 2006; Samanez-Larkin, Hollon, Carstensen, & Knutson, 2008) (Figure 4-1). Subjects saw and chose between one of three pairs of fractal cues (gain acquisition, loss avoidance, or neutral) in each run of 12 trials per condition for a total of 36 trials. After choosing one of the cues from a presented pair, subjects saw the outcome associated with their choice. One of the cues yielded a more favorable outcome while the other yielded a less favorable outcome. Thus in gain acquisition cue pairs, the favorable cue had a higher probability of returning gains (66% +$1.00 and 33% +$0.00) than the unfavorable cue (33% +1.00 and 66% +$0.00). Similarly, in loss avoidance cue pairs, the favorable cue had a higher probability of returning non-losses (66% –$0.00 and 33% –$1.00) than the unfavorable cue (33% –$0.00 and 66% –$1.00). In the neutral condition, choice of either cue had no impact on outcomes (100% $0.00). Within each pair, cues appeared randomly and with equal frequency on the left or right side of the screen. Cue pairings with optimal or suboptimal outcomes were randomly assigned by the computer and counterbalanced across subjects. To reduce potential memory-related interference, different cue pairs were used for the practice and experimental runs. Subjects were explicitly informed about cue probabilities before the practice session and instructed to try to maximize their earnings throughout. Importantly, they were not told which specific cue corresponded to which probability distribution.
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Figure 4-1.  MIL task design. During each trial, subjects first saw two cues individually, selected a cue when prompted with the word “Choose” and then viewed their highlighted choice on the screen. Finally their earnings for that trial were displayed followed by a fixation cross.
 
Subjects’ overall selection of the high versus low probability gain cue was used to index gain correct choices, while their overall selection of the low versus high probability loss cue was used to index loss correct choices. This study utilized subjects’ percentage “correct” choices in gain and loss conditions (excluding the first trial) as the primary predictor of life financial outcomes. 
 
4.2.3 Cognitive and Demographic Variables 
 
Selected neuropsychological tests were administered to assess potential cognitive confounds. The WAIS-III Digit Span and Letter-Number Sequencing tests were administered to assess working memory (Wechsler, 1997). The Trail Making Test (TMT) from the Halstead-Reitan Neuropsychological Test Battery was administered to assess cognitive flexibility and speed of processing (Reitan, 1993). Finally, a numeracy inventory (11 items) was administered to assess quantitative ability with basic number problems (Lipkus, Samsa, & Rimer, 2001; Peters, et al., 2006).
 
4.2.4 Life Financial Outcomes 
 
Assets and debt were assessed by self-report and validated with credit report information on a subset of subjects. Assets were assessed with the question: “What are your approximate current assets? (i.e., portion of home owned, bank accounts, investments, belongings)” coupled with a 16-category ordinal response scale ranging from <$500.00 in the lowest category to >$1,500,000.00 in the highest. Debt was assessed with the question: “What are your approximate current debts? (i.e., outstanding home loans, outstanding car loans, outstanding student loans, credit card debts, medical debts)” coupled with a 16 category ordinal response scale ranging from <–$500.00 in the lowest category to >–$1,500,000.00 in the highest. Other demographic data was also obtained in this questionnaire (e.g., age, sex, ethnicity, education). In addition to overall credit score, measures of credit amount and percent credit used were extracted from credit reports and used to validate self-reported assets and debt, respectively. 
 
4.2.5 Credit Reports
 
The primary outcome variable was self-reported assets and debt. To ensure that these financial life outcomes reflected objective financial status, credit reports were obtained in approximately half of the sample, including measures of overall credit and percent credit used. Subjects provided consent to allow access to their full credit report before participating in the experiment. Copies of complete credit reports from all three agencies were also provided to subjects.
 
4.3 Results
 
Regression models tested the key predictions that gain learning might account for assets and loss learning might account for debt (Table 4-1). Gain and loss correct choices (r = .09, n.s.) were not correlated (suggesting independence) but both were nonetheless included as predictors in models accounting for assets and debt. Similarly, assets and debt were only moderately positively correlated (r = .21, p < .05; suggesting partial independence) and so assets were included in models that accounted for debt and vice-versa. The first regression model predicting assets revealed a significant positive association of gain correct choices (but not loss correct choices) with assets (controlling for cognitive and demographic variables) (Figure 4-2). Of the potential confounds, only age was significantly associated with assets. Conversely, the second regression model predicting debt revealed a significant negative association of loss correct choices (but not gain correct choices) with debt (controlling for cognitive and demographic variables) (Figure 4-2). In the third regression model predicting the commonly used combined measure of net wealth (assets – debt), only age was a significant predictor.
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Figure 4-2.  Gain learning correlated with self-reported assets (A), while loss learning correlated with self-reported debt (B). Relationships depicted are partial plots controlling for all other variables in the model in Table 4-1.
 
Based on information derived from credit reports in approximately half of the sample (n = 37), self-reported assets and debt were regressed against credit amount and percent credit used, respectively. Self-reported assets and debt were also regressed against overall credit score (i.e., FICO score retrieved from Experian). Results indicated that while credit amount was associated with assets, percent credit used was more robustly associated with debt (Figure 4-3; Table 4-2). Experian FICOscore was also correlated with both assets and debt in opposite directions (Table 4-3). Together, these results suggest that self-reported assets and debt are associated with more objective indices of financial status, and that self-reported assets may differentially relate to components of financial status than self-reported debt. 
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Figure 4-3. Self-reported accumulation of assets was correlated with credit amount (A), while self-reported accumulation of debt was correlated with percentage credit used (obtained from credit reports) (B). Relationships depicted are partial plots controlling for other variables in the model in Table 4-2.
 
Table 4-1 Predictors of self-declared assets and debt (top: coefficient (s.e.m.); bottom: t-statistic; * p < .05, ** p < .01, *** p < .001). Effects for all dummy variables for ethnicity included in a single row of the table.
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4.4 Discussion
 
Together, these findings implicate a selective association of gain learning with increased assets, but loss learning with decreased debt. Remarkably, cognitive and demographic variables did not account for these associations. Further, affective learning variables were not significantly associated with a more traditional but unitary finance measure of net wealth. Instead of implicating a single mechanism for value assessment, these findings are consistent with an anticipatory affect model, in which distinct mechanisms assess gain and loss (Knutson & Greer, 2008). Moreover, the findings imply that anticipatory affect may not only influence immediately subsequent choice (Knutson & Greer, 2008), but also may have a systematic and cumulative influence on significant life financial outcomes (Knutson & Samanez-Larkin, forthcoming).
This initial demonstration that individual differences in affective capacities may influence life financial outcomes fits with a causal account in which gain learning promotes acquisition of assets while loss learning promotes avoidance of debt. Although these associations are predicted, specific, and robust, they are correlational. According to one alternative interpretation, other individual difference variables might account for the observed associations. Other individual differences related to cognitive and demographic variables, however, could not account for these associations in the present sample after entry into the regression model. An alternative reverse causal account might hold that greater assets increase gain learning, while greater debt increases loss learning. Based on the economic notion of diminishing marginal returns, however, it seems unlikely that increased assets would increase (rather than decrease) individuals’ sensitivity to gains (Bernoulli, 1738 / 1954), or that increased debt would decrease (rather than increase) individuals’ sensitivity to losses (Kahneman & Tversky, 1979). Future longitudinal studies based on these hypotheses may better determine whether gain learning and loss learning causally influence future life financial outcomes. 
The observed associations uniquely span multiple levels of analysis and timescales, offering a number of advances over previous research. Specifically, we recruited a community sample with significant assets and debt rather than a sample of convenience, demonstrated selective and robust functional dissociations, validated measures of life financial outcomes with credit report data, and assessed and controlled for other potentially important individual differences. 
In sum, beyond external social and economic forces, individual differences may also systematically influence life financial outcomes. Specifically, affective learning capacities may exert a novel influence – while sensitivity to gains might promote approach towards financial opportunities, sensitivity to losses may instead promote avoidance of financial threats. Although affective learning may facilitate dynamic adjustments to environmental events, it may also exacerbate choice biases over time. Fortunately, identification of biases may resolve targets for intervention – either on the part of individuals or of their financial advisors.



CHAPTER 5
EXPERIMENT 4: AGE-RELATED DECLINE IN RELATIVE CODING IN MESOLIMBIC REGIONS DURING PROBABILISTIC REWARD LEARNING
 
5.1 Introduction
 
Emerging research suggests that although older and younger adults show similar value-related mesolimbic activation during reward anticipation and reward feedback (Cox, Aizenstein, & Fiez, 2008; Samanez-Larkin, et al., 2007) older adults in some situations show deficits in probabilistic reward learning (Mell, et al., 2005; Mell, et al., 2009; Weiler, Bellebaum, & Daum, 2008). For example, Experiment 1 in Chapter 2 focused on anticipatory responses and showed no age differences in the representation of reward magnitude in the NAcc or MPFC. This effect extended to the feedback phase, where both age groups showed similar representation of reward magnitude in mesolimbic regions. It is important to note that Experiment 1 did not require learning and behavioral performance was controlled. However, when subsequent task performance is dependent on the accurate representation of prior reward outcomes, such as in probabilistic reward reversal learning tasks, older adults perform more poorly than younger adults (Mell, et al., 2005; Mell, et al., 2009; Weiler, et al., 2008). In fact, more generally, in tasks that require probabilistic learning, older adults often perform more poorly than younger adults (Chasseigne, et al., 2004; Chasseigne, Mullet, & Stewart, 1997; Fera, et al., 2005; Schmitt-Eliassen, et al., 2007; however see Aizenstein, et al., 2006). Although studies are beginning to link age differences in probabilistic learning to age-related changes in the activation of the striatum (Fera, et al., 2005; Mell, et al., 2009), these studies do not provide a mechanistic explanation of how these changes directly impact learning.
If value-based probabilistic learning depends on the accurate representation of reward magnitude, which is preserved with age, then why specifically do age differences in value-based learning emerge? When learning from probabilistic feedback, individuals not only need to accurately represent the actual individual outcomes, but also need to contextualize and integrate prior outcomes in order to form accurate predictions used for the subsequent choice. One common reinforcement learning method used to integrate previous outcomes and update predictions is through the computation of a reward prediction error. In the most commonly used model of this form, the Rescorla-Wagner learning rule, learning is achieved by updating expectations of reward with a fraction (learning rate) of the prediction error at feedback (Sutton & Barto, 1998). Specifically, the prediction error is the difference between the observed and expected reward. Thus, probabilistic reward learning depends not only on the representation of actual value, but also, perhaps more importantly, on the representation of prediction error (Seymour & McClure, 2008). Thus, it is possible that age-related deficits in probabilistic reward learning are due to age-related deficits in the computation and representation of prediction error. 
This experiment sought to identify the specific mechanism underlying age-related changes in probabilistic reward learning (Mell, et al., 2005). In this experiment we examined age differences in both behavioral and neural measures of learning while subjects were engaged in a probabilistic two-choice reward learning task while undergoing functional magnetic resonance imaging. Using a reinforcement learning model, we examined behavioral learning rates and the neural representation of both actual value and prediction error at feedback. 
 
5.2 Methods
 
5.2.1 Subjects
 
All subjects were recruited by a survey research firm to be ethnically and socio-economically representative of San Francisco Bay Area peninsula residents. Across the age range, subjects were matched on basic demographic variables (SES, income, ethnicity). Forty healthy volunteers (ages 22–85) completed the study. All subjects played a probabilistic value-based learning task while undergoing fMRI. 
All subjects first played a practice version of the learning task. Subjects were then shown the cash they could earn by performing the task successfully. Subjects received a fixed compensation of $20 per hour, as well as 100% of their total earnings during the task. They were also informed that it was possible to lose money on the task and that any losses would be deducted from their total earnings.  
 
5.2.2 Monetary Incentive Learning (MIL) Task
 
All subjects completed a 24-trial per condition version the MIL task (described above in Experiments 2 and 3). Subjects saw and chose between one of three pairs of fractal cues (gain acquisition, loss avoidance, or neutral) in each run of 24 trials per condition for a total of 72 trials. After choosing one of the cues from a presented pair, subjects saw the outcome associated with their choice (Figure 5-1). One of the cues yielded a more favorable outcome while the other yielded a less favorable outcome. Thus ingain acquisition cue pairs, the favorable cue had a higher probability of returning gains (66% +$1.00 and 33% +$0.00) than the unfavorable cue (33% +1.00 and 66% +$0.00). Similarly, in loss avoidance cue pairs, the favorable cue had a higher probability of returning non-losses (66% –$0.00 and 33% –$1.00) than the unfavorable cue (33% –$0.00 and 66% –$1.00). In the neutral condition, choice of either cue had no impact on outcomes (100% $0.00). Within each cue pair, cues appeared randomly and with equal frequency on the left or right side of the screen. Cue pairings with optimal or suboptimal outcomes were randomly assigned by the computer and counterbalanced across subjects. To reduce potential memory-related interference, different cue pairs were used for the practice and experimental runs. Subjects were explicitly informed about cue probabilities (but not which specific cue corresponded to each probability distribution) before the practice session and instructed to try to maximize their earnings throughout. Indices of gain learning performance were calculated by counting the percentage of choices of the “correct” cue (high probability).  Additional computationally derived measures of behavioral performance included learning rate and decision slopes (see model details below). Learning rate provides an estimate of how much weight is placed on the most recent relative outcome as an index of how quickly the value of cues are learned. Decision slope provides an estimate of the frequency with which individuals choose the highest value option.
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Figure 5-1.  MIL task design. During each trial, subjects first saw two cues individually, selected a cue when prompted with the word “Choose” and then viewed their highlighted choice on the screen. Finally their earnings for that trial were displayed followed by a fixation cross.
 
5.2.3 fMRI Acquisition and Preprocessing
 
fMRI data were collected using a 1.5 T General Electric MR scanner with a standard quadrature head coil as subjects played the MIL task using standard functional scanning parameters (24 4-mm thick slices with in-plane resolution 3.75 X 3.75 mm in plane resolution and no gap; extending axially from the midpons to the top of the skull; T2*-sensitive spiral in-out pulse sequence with repetition time 2 sec, echo 40 ms, and flip 90 degrees). High-resolution structural scans were also acquired to facilitate localization and coregistration of functional data (T1-sensitive spoiled gradient recalled acquisition pulse sequence with repetition time 100 ms, echo 7 ms, and flip 90 degrees).
Standard preprocessing was applied to fMRI data prior to multiple regression analysis (i.e., voxel time series were concatenated across runs, sinc interpolated to correct for non-simultaneous slice acquisition within each volume, corrected for three dimensional motion, high-pass filtered to remove frequencies > 90 s, and converted to percent signal change with respect to each voxel’s mean activation over the entire experiment). Visual inspection of motion correction estimates confirmed that no subject’s head moved more than 3 mm in any dimension from one volume acquisition to the next. Preprocessed time series data for each individual were analyzed with two whole brain multiple regression (Neter, et al., 1996) models to identify regions of the brain that correlated with actual value and prediction error during learning.
 
5.2.4 Actual Value Regression Model
 
The actual value regression model consisted of a set of two primary orthogonal regressors of interest: absolute gain (+$1) versus absolute non-gain ($0) outcome, and absolute loss (–$1) versus absolute non-loss (–$0) outcome. Additional covariates included anticipation of high versus low probability gain (66% vs. 33%), anticipation of high versus low probability loss avoidance (66% vs. 33%), two orthogonal regressors highlighting the periods of interest (anticipation and outcome), six regressors describing residual motion and six regressors modeling baseline, linear and quadratic trends for each experimental session. Regressors of interest were convolved with a gamma-variate function that modeled a prototypical hemodynamic response (Cohen, 1997) before inclusion in the regression model. Maps of t-statistics representing each of the regressors of interest were transformed into z-scores, slightly spatially smoothed to account for anatomical variability (kernel full-width half-maximum 4 mm), and spatially normalized by warping to Talairach space. Analyses focused on both group-level (across age) effects and age-related differences. Thresholds for statistical significance were set at Z > 3.28, p < 0.001, uncorrected, and required a minimum cluster of four face-to-face, contiguous 3.75-mm3 voxels.
 
5.2.5 Prediction Error Regression Model
 
The prediction error regression model used computationally-derived estimates of value produced by a standard reinforcement learning model fit to individual subject choices (O'Doherty, et al., 2003; Sutton & Barto, 1998). For each cue in a stimulus pair (e.g., A and B), the model estimates the expected values of choosing A (Qa) and B (Qb). This value represents the reward expected by selecting the cue. Q values were initialized at 0 and the value of the chosen stimulus (e.g., A) was updated after every trial according to the rule, Qat+1 = Qat + α*δt. δt represents the prediction error, Rt – Qat, or the difference between the expected (i.e., Qat) and actual outcome (i.e., Rt) at trial t. The probability of selecting each action was estimated using the softmax rule, which calculates the probability of selecting a cue based on the values (e.g., for choosing A, Pat = exp(Qat/β)/(exp(Qat/β) + exp(Qbt/β)). The constants α (learning rate) and β (decision slope) were adjusted to maximize the probability of the observed choices under the model. Best-fitting values for gain learning were α = 0.34 (95% CI: 0.25–0.43) and β = 0.12 (95% CI: 0.06–0.17), and for loss learning were α = 0.39 (95% CI: 0.27–0.51) and β = 0.22 (95% CI: 0.16–0.28). The learning model was fit with a single set of parameters across all subjects, since individual fits yielded less consistent results.  The predicted probabilities of choosing the higher probability cue on each trial over time provided a relatively accurate fit to the choices of the subjects (Figure 5-2).Continuous representations of value across the task were used in the fMRI regression model based on prediction errors (Rt – Qat) at outcome and expected value (Qa) at anticipation. The whole brain regression model consisted of a set of two primary orthogonal regressors of interest: relative gain outcome (gain prediction error; GPE), and relative loss outcome (loss prediction error; LPE). Additional covariates included gain expected value (GEV), loss expected value (LEV), two orthogonal regressors highlighting the periods of interest (anticipation and outcome), six regressors describing residual motion and six regressors modeling baseline, linear and quadratic trends for each experimental session. GEV and LEV (i.e., Q values) were modeled during anticipation and referred to the subsequently chosen cue, whereas GPE and LPE were modeled during feedback and referred to the outcome of the cue choice. Regressors of interest were convolved with a gamma-variate function that modeled a prototypical hemodynamic response (Cohen, 1997) before inclusion in the regression model. Maps of t-statistics representing each of the regressors of interest were transformed into Z-scores, slightly spatially smoothed to account for anatomical variability (kernel full-width half-maximum 4 mm), and spatially normalized by warping to Talairach space. Analyses focused on both group-level (across age) effects and age-related differences. Thresholds for statistical significance were set at Z > 3.28, p < 0.001, uncorrected, and required a minimum cluster of four face-to-face, contiguous 3.75-mm3 voxels.
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Figure 5-2.   A reinforcement learning model was fit to the choice behavior of subjects undergoing fMRI (data points indicate the proportion of subjects who chose “correct” (dark green) versus “incorrect” (light green) cues, while learning curves depict choice probabilities predicted by the computational model).
 
Although both gain and loss learning conditions were included, all results and discussion that follow focus on gain learning trials. Prior research reveals age differences in the processing of monetary losses even in the absence of learning (Samanez-Larkin, et al., 2007). The goal of the present study was to examine how age differences in gain learning emerge given prior evidence for the preservation of reward magnitude representations in old age.
 
5.3 Results
 
5.3.1 Behavior
 
Although the effects of age on the percentage of high probability gain choices across the task was not significant, β = –0.0006, t = –0.22, p = .83, parameters derived from the reinforcement learning model revealed age differences. A non-significant age difference in decision slopes, β = 0.003, t = 1.41, p = .17, and a significant age-related decline in learning rate, β = –0.007, t = –2.36, p < .05, suggests that across age there was a similar tendency to choose the dominant option, but the rate of learning declines over the life span such that older adults learn more slowly. The effect of age on gain learning rate is marginally significant, β = –0.006, t = –1.73, p = .09, when controlling for a number of more traditional measures of cognitive function including the trail-making test, digit span, and letter-number sequencing. Thus, learning rate is at least somewhat independent of these other cognitive abilities. In fact, when adding these cognitive individual difference variables to the model, the adjusted R2 declines from .105 to .098.
 
5.3.2 Actual Value at Outcome
 
Across subjects, a number of mesolimbic regions, including the medial prefrontal cortex, cingulate, and putamen, showed higher levels of activity after a $1 gain than a $0 non-gain (Figure 5-3). Additional regions in the cuneus and inferior parietal lobule also correlated with representations of actual value at outcome (Table 5-1). Two small clusters in the anterior cingulate and cuneus showed age-related declines in sensitivity to outcome actual value (Table 5-2). However, actual value signals did not differ with age anywhere in the striatum or medial prefrontal cortex (Figure 5-3). 
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Figure 5-3.  Actual value representations in mesolimbic regions. Across subjects in cingulate (A), MPFC (B), and ventral striatum (C). Small age difference in cingulate (D). No age differences in MPFC (E) or striatum (F).
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 5.3.3 Prediction Error at Outcome
 
Across subjects, prediction error at outcome was significantly correlated with activity in the medial prefrontal cortex, anterior and posterior cingulate, and inferior parietal lobule. No regions emerged across subjects in the striatum (Table 5-3). When examining effects of age, prediction error signals significantly declined with age in a number of mesolimbic regions including the medial prefrontal cortex / MPFC, NAcc, and putamen (Table 5-4 and Figure 5-4).
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Figure 5-4.  Prediction error in mesolimbic regions. Across subjects in cingulate (A), and MPFC (B), but not striatum (C). Age-related decline in MPFC (D), putamen (E) and ventral striatum (F).
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5.4 Discussion
 
In the present experiment we observed age-related declines in both a behavioral measure of learning rate and a neural measure of prediction error in mesolimbic brain regions. This age-related deficit in relative coding is consistent with recent evidence that older adults have more difficulty with the relative representation of monetary outcomes (Eppinger & Kray, in press). A recent study revealed that electrophysiological signals in the frontal cortex of older adults do not significantly discriminate between $0 outcomes for gain and loss trials. The present study extends these recent results both by revealing that there may be a more general decline in relative coding with age and by specifically localizing the impairment in mesolimbic brain regions.
Although there were no significant age differences in the overall percentage of high probability choices in this task, we did observe a significant age-related decline in learning rate. Relative to younger adults, the older adults in the sample learned more slowly. Although this difference did not seem to greatly impact overall performance in this particular task, it is likely that more overt deficits would emerge in tasks which require reversal learning (Mell, et al., 2005) or include larger choice sets. In the present task, when only limited to two options, there is a higher probability of choosing correctly even by chance than if the set size were larger. Additionally, the probability distributions were provided to subjects before engaging in the task. In this experiment subjects may have been able to take advantage of the ability to hypothesis test, which may have made learning easier than if the probabilities were not given as priors (and needed to be estimated by the subjects through experience alone). When choice set size is increased or priors are not given, more overt age differences in learning performance may emerge. It is important to note that without the reinforcement learning model, neither the behavioral difference in learning rate nor the differences in the neural representation of value would have been observed. These results highlight the added utility of this computational approach.
The neuroimaging results reveal that although the representation of actual value in mesolimbic regions is preserved with age, the representation of prediction error in these same regions declines with age. The findings suggests that impairments in probabilistic reward learning may be due to age-related changes in relative coding, which relies on the comparison of explicit values at feedback to current estimates of expected value for the chosen cue. Previous studies in both human and non-human primates have revealed that this computation relies primarily on dopaminergic nuclei in the midbrain (McClure, et al., 2004b; Montague, Hyman, & Cohen, 2004; Schultz, 2001). Thus, it is possible that this deficit is due to age-related decline in dopaminergic midbrain nuclei. What appear to be striatal and cortical deficits may be the result of dysfunction elsewhere in the reward system. However, the present experiment was limited to standard resolution whole brain fMRI and cannot directly speak to the possible role of age-related dopaminergic changes or the functioning of the midbrain in relative coding. Future studies utilizing imaging techniques optimized for direct measurement of dopaminergic nuclei are needed to more precisely examine whether the observed deficit is due to deeper dysfunction in the reward system.
One reason why the age-related decline in learning rate and relative coding in the striatum did not lead to significant age differences in the overall number of high probability choices may be related to the possibility that probabilistic learning can be supported by both striatal and extrastriatal systems in old age. It has recently been suggested that compensatory mechanisms may lead to an increase across the adult life span in the recruitment of extrastriatal regions like the medial temporal lobes and frontal cortex during more implicit forms of learning that traditionally depend primarily on striatal regions in young adulthood (Rieckmann & Bäckman, 2009). Although we did not find evidence for increased cortical recruitment with age, it is possible that the influence of age-related deficits in relative coding were offset by increased support from other regions in this relatively simple two-choice task. However, increases in task complexity (especially for the subprocesses that traditionally rely on striatal systems such as probability estimation) may lead to more overt learning impairments in older adults (Rieckmann & Bäckman, 2009).
Overall the study reveals a specific mechanism by which age-related neural changes may disrupt probabilistic reward learning. An age-related decline in the relative representation of outcomes may underlie probabilistic learning impairments in general, even in situations that do not rely on value-based feedback. Importantly, these age-related changes in relative coding may negatively impact a range of everyday decisions that rely on learning from probabilistic information (Lillard & Willis, 2001).


CHAPTER 6
EXPERIMENT 5: EXTENDED TIME TO LEARN IMPROVES PROBABILISTIC REWARD LEARNING IN OLDER ADULTS
 
6.1 Introduction
 
Although age-related declines in many aspects of explicit learning and memory have been well documented over the past several decades, surprisingly little research has focused on age differences in more implicit processing, such as probabilistic learning (Rieckmann & Bäckman, 2009). In the context of value-based probabilistic learning, prior research reveals that age-related impairments emerge in reward learning when the number of trials available to acquire associations are relatively limited or associations reverse (Mell, et al., 2005; Weiler, et al., 2008), suggesting that overall older adults learn more slowly (Mell, et al., 2009; Weiler, et al., 2008). In the previous experiment in Chapter 5, age differences in learning rate and relative coding did not lead to an age-related impairment in the proportion of choices allocated to the high probability cue when subjects were limited to a forced choice between two options. However, recent evidence suggests that age-related probabilistic learning impairments can be magnified when choice sets are increased (Chasseigne, et al., 2004). 
In the present task, we investigated whether older adults would show probabilistic learning impairments with larger choice sets and limited trials, but perform as well as younger adults if given extended time to learn. The goal of Experiment 5 was to further test the limits of probabilistic learning in older adults and demonstrate that, even when task demands increase, the performance of younger and older adults could be matched under supportive conditions.
 
6.2 Methods
 
6.2.1 Subjects
 
Eighteen younger (ages 19–33) and 32 older (ages 67–86) adults completed the study. Subjects were recruited either by a survey research firm or through local online advertisements in the San Francisco Bay Area peninsula. All subjects played a probabilistic value-based learning task. The present experiment did not include fMRI. All subjects first played a practice version of the learning task. Subjects received a fixed compensation of $20 per hour, as well as 10% of their total earnings during the task.
 
6.2.2 Expanded Monetary Incentive Learning (MIL) Task
 
In the expanded MIL task, subjects saw and chose between four fractal cues. After choosing one of the cues, subjects viewed the outcome associated with their choice (Figure 6-1). The expanded MIL task was different from the standard MIL task used in the previous experiments in four ways. First, the task used here only included a gain condition and did not include cues associated with losses. Second, the choice set was doubled so that subjects chose from 4 (instead of 2) cues on each trial. The probabilities of winning $1 associated with each of the four cues were: 0.4, 0.5, 0.6, 0.7. Third, in this task subjects were not given the probability distributions as priors. The only information provided was that in each round some cues would be better than others (i.e., associated with a higher probability of winning $1), and that none of the cues would always pay $1 or $0. Fourth, two different block length conditions were included instead of just one. The short block included 25 trials and the long block included 75 trials. All subjects played both short and long blocks. Different cue sets were used for each block of trials. Learning performance was assessed by computing the overall proportion of choices allocated to the two highest probability cues (0.6, 0.7) in each round. Additional measures of strategy use were assessed for each age group and condition by computing the proportion of trials where subjects used the simple heuristic win-stay/lose-shift.
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Figure 6-1.  Expanded MIL task design. During each trial, subjects viewed four cues, selected a cue when prompted with the word “Choose” and then viewed their highlighted choice and their earnings for that trial on the screen. Finally, a fixation cross appeared at the end of each trial. s = seconds.
 
6.3 Results
 
A significant main effect of task length, F1, 48 = 6.541, p < .05, revealed that the proportion of choices allocated to the higher probability cues was higher in the longer block (75 trials) compared to the shorter block (25 trials). This main effect was qualified by a block length by age group interaction, F1,48 = 3.837, p = .056, which revealed that the influence of age on learning differed between block length conditions. Follow-up t-tests revealed significantly higher levels of performance in the long block than in the short block for the older adults, t31 = 3.761, p < .001, but no difference between conditions for the younger adults, t17 = 0.375, p = .71. As a result, younger adults outperformed older adults in the short block condition, t48 = 2.55, p < .05, but not in the long block condition, t48 = –0.13, p = .90 (Figure 6-2). The main effect of age was not significant, F1,48 = 2.562, p = .12. 
Additional analyses explored strategic differences between conditions and groups in the use of win-stay/lose-shift. A non-significant main effect of task length, F1, 48 = 0.838, p = .37, revealed that the use of win-stay/lose-shift did not differ between task length conditions across subjects. Although the main effect of age was not significant, F1,48 = 0.458, p = .50, a significant block length by age group interaction, F1,48 = 8.723, p < .01, revealed that the use of this strategy in the two trial length conditions differed between the age groups. Follow-up t-tests indicated that younger adults were more likely to use win-stay/lose-shift during the short block (25 trials) than during the long block (75 trials), t17 = 2.193, p < .05, whereas this difference between conditions was not significant for older adults, t31 = –1.809, p = .08. It appeared that older adults were equally as likely to use win-stay/lose-shift in both conditions. However, younger and older adults did not significantly differ in the use of this strategy in either the short, t48 = 0.174, p = .86, or long, t48 = –1.593, p = .12, block conditions.
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Figure 6-2.  Expanded MIL task behavior. Although younger adults outperformed older adults in the short block condition (25 trials), the older adults performed as well as the younger adults in the long block condition (75 trials). Y = younger adults; O = older adults. * p < .05
 
6.4 Discussion
 
The results of the present experiment reveal that age differences in probabilistic reward learning are magnified when choice set sizes increase, but that older adults can reach the same performance criterion as younger adults if given enough trials to learn. Although in the previous experiment in Chapter 5 we did not observe age differences in the number of high probability choices, here with an increased choice set older adults performed more poorly than younger adults when only given a limited number of trials. Compared to the two-cue task used in the previous experiment, the age differences with the increased set size (four-cue) in the short block in the present experiment are consistent with recent evidence that age-related probabilistic learning impairments are magnified when cue sets are increased (Chasseigne, et al., 2004). 
Previous studies reveal that age-related impairments emerge in probabilistic reward learning when the number of trials available to acquire associations are relatively limited or associations reverse (Mell, et al., 2005; Weiler, et al., 2008), suggesting that, overall, older adults learn more slowly (Mell, et al., 2009; Weiler, et al., 2008). Similarly, in probabilistic classification tasks when older adults are allowed to proceed through learning at their own pace, performance is similar between younger and older adults (Musiélak, Chasseigne, & Mullet, 2006). In the present task, when relatively more trials are available (i.e., 75 compared to 25) and therefore more stable estimates of value are formed, older adults perform as well as younger adults. Similar effects have been reported in perceptual decision tasks – accuracy based on probabilistic information improves as the quality of information improves especially for older adults (Ratcliff, et al., 2006). The results of the present experiment confirm these prior findings and reveal that older adults are able to perform as well as younger adults if provided with enough experience.
Although imaging data were not acquired in the present experiment to verify this, it is possible that the increase in choice set exceeded working memory capacity and limited lateral prefrontal contributions. If this were the case, the age difference in the limited trial condition could be consistent with the hypothesis that increases in task complexity (especially for the subprocesses that traditionally rely on striatal systems such as probability estimation) lead to more overt learning impairments in older adults (Rieckmann & Bäckman, 2009). Future studies should directly explore this possibility by examining the relative contributions of frontal and striatal systems during probabilistic reward learning from a reduced or expanded set of options.
One important difference between this version of the MIL task and the versions used in previous experiments is that here the probability distributions were not provided to the subjects as prior knowledge. Subjects had to estimate the probabilities associated with each cue in the choice set through experience alone. Thus, it is possible that the lack of an explicit reference from which to evaluate the cues contributed to the magnification of age differences in the short block. Future studies should more specifically explore potential age differences in probability estimation in situations where priors are either provided or omitted.
Importantly, the increased sensitivity to choice set size with age may negatively impact everyday decisions that include a large number of choices. Thus, it may be adaptive for older adults to prefer less choice (Reed, Mikels, & Simon, 2008) or defer decisions to someone else (Finucane, et al., 2002), especially in situations where decisions depend on prior learning. However, the results also imply that the quality of decisions can be equated across age if older adults are given enough time to learn, even in situations where performance depends on learning from probabilistic information.


CHAPTER 7
EXPERIMENT 6: VARIABILITY IN NUCLEUS ACCUMBENS ACTIVITY MEDIATES AGE-RELATED SUBOPTIMAL FINANCIAL RISK TAKING
 
7.1 Introduction
 
The increases in life expectancy that occurred during the twentieth century will continue to expand the proportion of older adults in the global population (Hayutin, 2007b), magnifying the relative economic impact of their financial decisions (Cairncross, 2007). Despite the growing importance of decision competence in old age (Finucane, et al., 2002), little research has focused on how aging might influence financial risk taking. Although popular stereotypes suggest that older adults are more risk averse than younger adults, these stereotypes are not well supported by research (Mather, 2006). Instead, research suggests that in some situations older adults may simply make more errors when making risky decisions (Denburg, et al., 2007; Li, Biele, Mohr, & Heekeren, 2007; Mohr, Li, & Heekeren, 2010; Peters, et al., 2007). For instance, in the domain of finance, healthy older investors have been shown to continue to invest in risky assets even after suffering losses in the stock market large enough to necessitate postponing retirement (AARP, 2002). 
Age differences in financial decision making could occur for a number of reasons. Extensive research, for instance, has linked age-related deficits in cognitive ability to diminished neural function in the lateral prefrontal and medial temporal cortex (Cabeza, et al., 2005; Hedden & Gabrieli, 2004). Beyond cognitive deficits (e.g., related to executive function or memory), aging might also influence value estimation, which might recruit both cortical (e.g., medial prefrontal cortex) and subcortical (e.g., ventral striatum) regions (Knutson & Bossaerts, 2007). In addition to age-related declines in the structural integrity of the prefrontal cortex and striatum (Buckner, 2004; Head, Snyder, Girton, Morris, & Buckner, 2005; Hicks & Birren, 1970; Raz, 2005; Rubin, 1999), theoretical accounts propose that aging may compromise dopaminergic modulation of these regions (Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006; Braver & Barch, 2002; Li, Lindenberger, & Sikström, 2001; Nieuwenhuis, et al., 2002).
Only a few neuroimaging studies have focused on how aging might influence subcortical function in general (Samanez-Larkin & Carstensen, forthcoming) and striatal function in particular (Aizenstein, et al., 2006; Dahlin, Neely, Larsson, Bäckman, & Nyberg, 2008). These emerging findings suggest that while age may not influence neural responses to explicitly signaled reward cues and outcomes (Cox, et al., 2008; Samanez-Larkin, et al., 2007), age may compromise striatal activity during more cognitively demanding reward tasks (Mell, et al., 2009; Schott, et al., 2007). Currently, however, no studies (aside from those presented in this dissertation) have explored age differences in financial decisions related to investments with functional neuroimaging.
Combining computational theories implicating age-related compromises in dopamine function with neuroimaging evidence for altered reward learning, theorists have proposed that “noisy” value signals may bias risky decisions (Li, et al., 2007). We tested this proposition by examining whether measures of variance in frontostriatal function might relate to age-related biases in financial risk taking. Specifically, in the context of a financial investment task, we examined whether age might compromise behavioral performance as well as variability in medial prefrontal cortex (MPFC) and nucleus accumbens (NAcc) activity.
 
7.2 Methods
 
7.2.1 Subjects
 
All subjects were recruited by a survey research firm to be ethnically and socio-economically representative of San Francisco Bay Area residents. Across the age range, subjects were matched on basic demographic variables (SES, income, ethnicity). One hundred and ten healthy volunteers (mean age = 51.4, range = 19–85 years, 52% female) completed the study. All subjects played an investment task, but fifty-four of these subjects (mean age = 51.3, range = 21–85 years, 54% female) played the task while undergoing functional magnetic resonance imaging (fMRI). A subset of thirty-eight subjects were specifically not recruited for fMRI as a behavioral control group. Fifty-seven of the remaining seventy-two adults were eligible for fMRI and completed the scan session. Three of these individuals were excluded from fMRI analyses due to a structural abnormality (71 y.o male) or excessive motion (26 y.o. male, 74 y.o male).
All subjects first played a practice version of the investment task. Subjects were then shown the cash they could earn by performing the task successfully. Subjects received a fixed compensation of $20 per hour, as well as a tenth of their total earnings during the task. They were also informed that it was possible to lose money on the task and that any losses would be deducted from their total earnings. 
 
7.2.2 BIAS Task
 
A slightly modified version of the Behavioral Investment Allocation Strategy (BIAS) task (Kuhnen & Knutson, 2005) was used to elicit a range of investment behaviors from each subject, including both optimal and suboptimal financial choices. Each subject completed 10 blocks of 10 trials each for a total of 100 trials. During each trial, subjects first saw two stocks and a bond (anticipation, 2 s), selected one of these assets when prompted with the word “Choose” and then viewed their highlighted choice on the screen (choice, 4 s). After a brief delay (wait, 2 s) their earnings for that trial and total earnings were displayed (outcome, 4 s) followed by a display of the outcomes of all assets on that trial (market, 4 s), and finally a fixation cross (fixation, 2; see Figure 7-1).At the beginning of each block, the computer randomly assigned one of the two stocks to be the “good” stock, and the other to be the “bad” stock. Subjects were informed that the computer would make these assignments before performing that task, but were not informed which stock was assigned to be good and which was assigned to be bad at the beginning of each block. The good stock dominated the bad stock in the sense of first-order stochastic dominance (Huang & Litzenberger, 1988). Specifically, outcomes of the good stock (i.e., +$10 with 50% probability, +$0 with 25% probability, and −$10 with 25% probability) were better than outcomes of the bad stock (i.e., +$10 with 25% probability, +$0 with 25% probability, and −$10 with 50% probability) on average for each trial. The bond paid $1 with 100% probability on each trial. Earnings were drawn independently from these distributions for each trial. After being shown the distributions, all participants were additionally explicitly told that stocks choices were riskier than bonds. For instance, an excerpt from the instructions reads: "Once again, the three assets available to choose from are two stocks and a bond.  The stocks are risky, because their earnings can be +$10, –$10, or $0.  The bond is riskless, because it always pays $1." 
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Figure 7-1.  Investment (BIAS) task design. During each trial, subjects first saw two stocks and a bond (anticipation, 2 s), selected an asset when prompted with the word “Choose” and then viewed their highlighted choice on the screen (choice, 4 s). After a brief delay (wait, 2 s) their earnings for that trial and total earnings were displayed (outcome, 4 s) followed by a display of the outcomes of all assets on that trial (market, 4 s) and finally a fixation cross (fixation, 2 s).
 
7.2.3 Behavioral Analysis
 
In the BIAS task, the optimal strategy of a rational, risk-neutral agent is to pick a stock if he or she expects to receive a dividend that is at least as large as the bond earnings. Since the actual monetary amounts at stake in each trial were small (−$1 to $1), we used risk neutrality as the baseline model of the rational actor’s behavior. A rational actor should also update his or her beliefs about the probability of each stock being optimal according to Bayes’ rule. Based on these assumptions, we derived the optimal portfolio selection strategy. This optimal model is identical to that applied in previous research using the BIAS task (Kuhnen & Knutson, 2005). To some extent, individual investors approximated the strategy of the rational actor, suggesting that this model provides a reasonable baseline for group comparisons. Like the rational actor, subjects on average showed an initial preference for bonds at the beginning of each block, and then shifted towards preferring the good stock (Figure 7-2). 
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Figure 7-2.  Individual investors approximated the strategy of the rational actor model. Overall at the beginning of each block of ten trials, individuals of all ages showed an initial preference for bonds and then shifted toward a preference for the good stock. This bias becomes weaker with age. Older adults show both a reduced initial preference for the bond at the beginning of a block and a weaker preference for the good stock at the end of a block. Dashed lines are logarithmic trendlines representing the average choices of the rational actor model.
 
During trial τ in each block, a rational risk-neutral agent should pick stock i if he/she expects to receive a dividend Diτ at least as large as the bond earnings, that is, if: 
 
E[Diτ|Iτ–1] >= E[DBτ |Iτ-1] = 1, where Iτ-1 is the information set up to trial τ-1
That is: Iτ-1={Dit| ∀t≤τ-1, ∀i∈{Stock T, Stock R, Bond C}}. 
Let xiτ = Pr{ Stock i = Good |Iτ-1}. Then: 
E[Diτ|Iτ-1] = xiτ [0.5 * 10 + 0.25 * (-10) + 0.25 * 0] + (1 - xiτ) [0.5 * (-10) + 0.25 * 10 + 0.25 * 0] = 2.5 * (2xiτ - 1) 
Hence, a risk-neutral agent will pick stock i only when his belief xiτ is such that: 
2.5 * (2xiτ - 1) >= 1 ⇔  xiτ >= 0.7 
 
If the agent’s beliefs are weak, that is: xiτ < 0.7, ∀i ∈{Stock T, Stock R}, then the optimal strategy for the risk-neutral agent is to pick the bond in trial τ. A rational agent should update his or her beliefs xiτ according to Bayes’ rule. 
	We refer to the uncertainty of a trial τ, defined as min(xiτ,xjτ), where i,j ∈{StockT,StockR} and i ≠ j. Hence, the uncertainty is highest (and equal to 0.5) at the beginning of a block, because at that point the probability of either one of the stocks being the good one is 50%. The uncertainty decreases as more information about dividends is revealed and it becomes clearer which stock dominates.  
For each trial, we compared subjects’ investment choices to those of the rational actor. Choices that deviated from the rational actor’s optimal choices were labeled as suboptimal or “mistakes,” and included three types. Risk-seeking mistakes occurred if subjects chose a risky option (i.e., a stock) when the riskless option (i.e., a bond) was the optimal investment. These mistakes tend to occur early within blocks when it is not yet clear which stock is the good stock. Confusion mistakes occurred if subjects chose a risky option (i.e., a stock) when the other risky option (i.e., a stock) was the optimal investment. These mistakes can only be made later within each block when there is enough evidence for the rational actor to distinguish the good from the bad stock.  Risk-aversion mistakes occurred if subjects chose the riskless option (i.e., the bond) when a risky option (i.e., a stock) was the optimal investment.  These mistakes also tend to occur relatively later within blocks when the rational actor has enough evidence to distinguish the good from the bad stock. We explored the effect of age on rational choices as well as on each type of mistake. 
 
7.2.4 fMRI Acquisition and Analyses
 
Brain images were acquired with a 1.5T General Electric MRI scanner using a standard birdcage quadrature head coil. Twenty-four 4 mm thick slices (in-plane resolution 3.75 × 3.75 mm, no gap) extended axially from the mid-pons to the top of the skull, providing adequate spatial resolution of subcortical regions of interest (e.g., midbrain, ventral striatum). Functional scans of the whole brain were acquired every 2 s (TR = 2 s) with a T2*-sensitive in-/out- spiral pulse sequence (TE = 40 ms, flip = 90°) designed to minimize signal dropout at the base of the brain (Glover and Law, 2001). High-resolution structural scans were subsequently acquired using a T1- weighted spoiled grass sequence (TR = 100 ms; TE = 7 ms, flip = 90°), facilitating subsequent localization and coregistration of functional data. 
Preprocessing and whole brain analyses were conducted using Analysis of Functional Neural Images (AFNI) software (Cox, 1996). For preprocessing, voxel time series were sinc interpolated to correct for non-simultaneous slice acquisition within each volume, concatenated across runs, corrected for motion, slightly spatially smoothed (FWHM = 4 mm), and high-pass filtered. Statistical maps for individual subjects were coregistered with structural maps, spatially normalized by warping to Talairach space (using manual placement of landmarks in single subjects), and transformed into Z-scores. Whole-brain thresholds for statistical significance were set at Z > 3.888, p < .0001 with a required cluster size of 8 contiguous 2-mm resampled voxels.
 
7.2.5 Outcome Analyses
 
Preprocessed time series were submitted to a regression model that included three regressors indexing residual motion and six regressors modeling baseline, linear, and quadratic trends for each of the two runs. Regressors of interest were convolved with a γ-variate function that modeled a canonical hemodynamic response prior to inclusion in the regression model (Cohen, 1997). For whole brain outcome analyses, regressors of interest contrasted stock versus bond choice, as well as gain versus loss outcomes after stock choices. The model also included covariate regressors representing cumulative earnings (defined as current wealth earned during the task, updated at each outcome period) and current trial uncertainty (updated at each market period). For each trial, “uncertainty” referred to the minimum of the objective probabilities (computed using Bayes’ rule) of the two individual stocks being dominant.
 
7.2.6 Temporal Variability Analyses
 
In the present study, we used a statistic called the mean squared successive difference (MSSD) (von Neumann, Kent, Bellinson, & Hart, 1941) to index the temporal variability (or lability) of fMRI activation. 
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Although this statistic has been used to assess temporal variability of both self-report measures of affect (Jahng, Wood, & Trull, 2008; Woyshville, Lackamp, Eisengart, & Gilliland, 1999) and physiological measures of heart rate variability (Berntson, Lozano, & Chen, 2005; Owen & Steptoe, 2003), it has not been previously applied to neuroimaging data. MSSD approximates variance, but here more precisely indexes a lack of temporal specificity of neural activation by computing the variability of the signal from one brain acquisition to the next. For each subject, we calculated the MSSD over the entire preprocessed, detrended, and normalized activation timecourse averaged and extracted from each of four volumes of interest (VOIs): (1) NAcc; (2) anterior caudate; (3) MPFC; (4) and anterior insula. Given the importance of testing for mediation in evaluating theories of aging (Salthouse, 2006), we then used individual MSSD estimates in a mediation analysis exploring the relationship between age and investment mistakes (Baron & Kenny, 1986). We examine mediation effects both across adult age and within narrow age ranges (Hofer, Flaherty, & Hoffman, 2006; Lindenberger & Potter, 1998). Prior to the mediation analysis, outliers were identified by averaging the MSSD from all four VOIs and excluding individuals greater than three standard deviations away from the mean.  One subject (70 y.o. male) was identified as an outlier and excluded from the temporal variability analyses. Analyses were conducted on the remaining 53 subjects.
 
7.2.7 VOI Definition
 
VOIs were anatomically specified with 6 mm diameter spheres in individual subjects based on clusters of activation identified in prior research and based on specific anatomy. The NAcc was defined anatomically (Knutson, Delgado, & Phillips, 2008). The anterior caudate was defined based on the primary cluster of activation from a prior probabilistic learning study which characterized this region as the “actor” in the actor-critic reinforcement learning model (Balleine, Delgado, & Hikosaka, 2007; O'Doherty, et al., 2004). The other two regions used in the analyses were anatomically defined based on functional effects observed in prior studies in the MPFC (Knutson, et al., 2003; Samanez-Larkin, et al., 2007) and anterior insula (Samanez-Larkin, et al., 2007; Samanez-Larkin, et al., 2008). VOI data were used for the temporal variance analyses (described above) and to generate seed timecourses for the functional connectivity analyses (described below). See Figure 7-3 for sample VOI placement in four individuals.
 
[image: image1-10.png]
Figure 7-3.  Volume of interest placement. Spheres were hand-placed bilaterally in four brain regions (MPFC = medial prefrontal cortex, AIns = anterior insula, ACaud = anterior caudate, NAcc = nucleus accumbens) on the anatomical images of individual subjects. Small volumes of interest (6 mm diameter spheres) were used to ensure that equal amounts of and only gray matter were included in each volume across age. The location of all 8 spheres is shown here for 4 sample subjects of various ages.
 
7.2.8 Functional Connectivity Analyses
 
Using the right NAcc VOI as a seed, functional connectivity analyses examined age and performance differences in frontostriatal connectivity (Draganski, et al., 2008) during both anticipation and outcome phases of the task (Rissman, Gazzaley, & D'Esposito, 2004). One regression model examined age differences in connectivity and a second regression model examined relationships between individual differences in risk-seeking mistakes and connectivity (controlling for age).
Methodological issues related to age differences. In all analyses, special care was taken to minimize potential confounds associated with age differences (Samanez-Larkin & D'Esposito, 2008). Each individual was screened for dementia and their structural and functional brain imaging data were inspected for abnormalities. Each individual’s brain was warped into Talairach space with reference to hand-placed anatomical landmarks. Additionally, all VOIs were anatomically defined on each individual’s anatomical images, ensuring that equal amounts of data would be extracted from gray matter in each region for each subject. In this particular study we did not include a separate HRF control (such as hypercapnia or a primary sensory task), but in prior studies examining age differences in striatal regions with similar samples we have included these controls (see Chapter 2) and they did not reveal age differences in signal amplitude. However, group differences in hemodynamics cannot account for the present effects because similar responses to outcomes were observed across age in the striatum and prefrontal cortex (see Results below).
 
7.3 Results
 
7.3.1 Behavioral Results
 
Providing evidence for the ecological validity of behavioral performance in the investment task, a regression analysis revealed a significant relationship between rational choices (i.e., choices that matched the rational actor model) in the BIAS taskand the accrual of real world financial assets, after controlling for debt and age. Subjects who made a higher proportion of rational choices in the investment task also reported accumulating more real world wealth. Although working memory function (as measured by Letter-Number Sequencing (Wechsler, 1997)) was also correlated with assets, β = .246, t = 2.08, p < .05, the relationship between rational choices and assets held, β = .203, t = 2.20, p < .05, after controlling for this index of working memory as well as two other measures of individual differences in cognitive ability (i.e., Digit Span (Wechsler, 1997) and the Trail-Making Test (Delis, et al., 2004)).
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Figure 7-4.  Investment task optimal choices and real world assets. A partial plot (controlling for age and liabilities) reveals that the proportion of rational choices in the experimental BIAS task was significantly associated with the accrual of financial assets outside of the laboratory.
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Number of rational choices in the task decreased with age. Conversely, investment mistakes in the BIAS task increased with age, as indicated by a significant main effect of age on suboptimal choices, β = .339, t = 3.75, p < .0001. The effect of age on suboptimal choices remained significant, β = .265, t = 2.36, p < .05, after controlling for education, numeracy (Lipkus, et al., 2001), and performance on Letter-Number Sequencing, Digit Span, and the Trail-Making Test. Of these mistakes, however, risk-seeking mistakes, β = .238, t = 2.55, p < .05, and confusion mistakes, β = .293, t = 3.18, p < .05, specifically increased with age, while risk-aversion mistakes did not, β = –.026, t = –0.27, p = .79 (Figure 7-5). When including both linear and quadratic effects of age in the model, the linear effects remained the same but no quadratic effects were significant (all p > .25). Thus, we only report linear effects of age in subsequent analyses.Although the present community sample was selected to be representative of the demographics of the San Francisco Bay Area, selection may have occurred for the subset of subjects that participated in scanning (e.g., for more risk-seeking individuals). Thus, we ran a follow-up behavioral analysis of age differences in financial risk taking in the subgroup of 19 younger adults (aged 19–30) and 19 older adults (aged 65–81) who did not undergo fMRI. These subjects were only recruited to participate in a behavioral version of the task and no mention of scanning was made to them at any time during recruitment or completion of the study (based on the small sample size and directional predictions, one-tailed tests are reported). In this subset of subjects, the same pattern appeared. Relative to younger adults, older adults made significantly fewer rational choices, t36 = –2.03, p < .05, and more risk-seeking mistakes, t36 = 1.47, p < .05, and confusion mistakes, t36 = 1.64, p < .05, but did not differ in terms of risk-aversion mistakes, t36 = 0.46, p = .33 (Figure 7-5).
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Figure 7-5.  Age-related increase in risky investment mistakes. (A) Age was associated with increased risk-seeking mistakes (RSM) and confusion mistakes (CM), but not risk-aversion mistakes (RAM). (B) A subset of younger and older subjects who were not recruited for fMRI showed the same behavioral results. Error bars represent s.e.m.
 
Although older adults made more mistakes when choosing stocks due to both excessive risk seeking and confusion, risk-seeking mistakes occurred much more frequently than confusion mistakes across the entire sample of 110 adults. Specifically, risk-seeking mistakes comprised 32% of choices in the oldest third of subjects aged 67–85 and 24% in the youngest third aged 19–35; while confusion mistakes comprised 8% in the oldest third and 3% in the youngest third. Due to the low incidence of confusion mistakes, the following results focus on explaining age differences in risk-seeking mistakes.
 
7.3.2 Neuroimaging Results
 
Neuroimaging analyses sought to identify neural markers that could account for the age differences in investment decision making in the subset of individuals who underwent fMRI. One simple account might posit that age diminishes the strength of neural responses to feedback, which then compromises subsequent reward prediction and choice selection. To examine this possibility, we compared subjects’ neural responses to monetary outcomes. Across all subjects, activation in the MFPC, NAcc, anterior caudate, and posterior cingulate increased in response to monetary gain (+$10) versus loss (–$10) outcomes.  An age by outcome interaction revealed significantly greater neural sensitivity to outcomes in older adults in the inferior frontal and temporal gyri, but responses to outcomes in the MPFC, NAcc, and anterior caudate did not differ as a function of age. Individual difference analyses evaluated whether sensitivity to outcomes could account for age-related investment mistakes, but none of the regions that showed age-related effects were significantly associated with risk-seeking mistakes. Follow-up VOI analyses confirmed this absence of effects by demonstrating that measures of neural sensitivity to outcomes were not significantly correlated with risk-seeking mistakes after controlling for age in the MPFC, NAcc, or anterior caudate (all p > .33). Thus, age-related neural responses to feedback could not account for the observed age-related increases in risk-seeking mistakes.
Although mean anticipatory activity in the NAcc predicted risky (i.e., stock) choices on individual trials (p < .05) replicating previous findings in younger adults only (Kuhnen & Knutson, 2005), mean activity in the NAcc did not predict risk-seeking mistakes (p = .36) in this sample that spanned the adult life span. 
By an alternative account, temporal variability in NAcc activation might generate mistakes in risky financial decision making (Li, et al., 2007). Specifically, if NAcc activation primarily promotes financial risk seeking and becomes noisy (yet not necessarily diminished), this could promote risk-seeking mistakes. We tested this hypothesis by examining whether temporal variability in NAcc activity mediated the relationship between aging and risk-seeking mistakes. As described above, age was associated with risk-seeking mistakes in the subset of subjects who underwent fMRI, β = .310, t = 2.23, p < .05 (Figure 7-6). Whole brain analyses revealed that temporal variability (MSSD) increased with age primarily in the NAcc and anterior caudate but not the MPFC. While the largest cluster had a peak voxel in the thalamus (Table 7-2), additional peaks within this cluster also appeared in the NAcc and anterior caudate (Figure 7-6). Variability also increased with age in several additional smaller clusters in the midbrain and lateral frontal and parietal cortices (Table 7-2). Follow-up mediation analyses were conducted with temporal variability estimates drawn from each VOI. Age was associated with increased temporal variability in the right NAcc, β = .490, t = 3.13, p < .005. Controlling for age, increased temporal variability in the NAcc was associated with increased risk-seeking mistakes, β = .260, t = 2.47, p < .05.
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After simultaneous entry of age and NAcc temporal variability into the regression, age no longer significantly predicted risk-seeking mistakes, β = .182, t = 1.18, p = .12, consistent with full mediation of age-related financial risk-seeking mistakes by NAcc temporal variability (Figure 7-6). The relationship between NAcc variability and risk-seeking mistakes remained significant, β = .268, t = 2.67, p < .05, after controlling for education, numeracy, and performance on Letter-Number Sequencing, Digit Span, and the Trail-Making Test, in addition to age.
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Figure 7-6.  Nucleus accumbens variability mediates age-related risk-seeking mistakes. (A) Age was associated with increased risk-seeking mistakes (RSM) in the fMRI subject subset. (B) Temporal variability (MSSD) increased with age throughout the midbrain and striatum with peaks in the substantia nigra, ventral tegmental area (S = –7), anterior caudate (A = 20), putamen, medial caudate, and the nucleus accumbens (A = 10). Anatomical underlay is an average of all subjects’ spatially normalized structural scans. (C) Variability in the right NAcc (nucleus accumbens) fully mediated the relationship between age and RSM; the relationship between age and RSM became insignificant after adding NAcc variability to the model (.309 to .182; path coefficients are standardized betas). 
 
A similar, but weaker, effect was observed in the left anterior caudate. Age was also associated with increased temporal variability in the left anterior caudate, β = .566, t = 4.48, p < .0001. After controlling for age, anterior caudate temporal variability was marginally associated with increased risk-seeking mistakes, β = .286, t = 1.91, p = .06, and simultaneous entry of age and anterior caudate temporal variability into the regression revealed that age no longer significantly predicted risk-seeking mistakes, β = .148, t = 0.96, p = .34. The relationship between anterior caudate variability and risk-seeking mistakes was similar, β = .270, t = 1.77, p = .09, after controlling for education, numeracy, and performance on Letter-Number Sequencing, Digit Span, and the Trail-Making Test in addition to age.
When splitting the sample into thirds by age, the strength of the variability effect appeared to increase with age. Specifically, the relationship between NAcc variability and risk-seeking mistakes (controlling for age) was strongest in the oldest third (N = 18) of the sample, β = .449, t = 2.29, p < .05. There was a trend effect for the middle third of the sample (N = 17), β = .468, t = 1.77, p < .10, and a non-significant effect for the youngest third of the sample (N = 18), β = .062, t = 0.24, p = .81. This weaker effect in the younger adults is likely due to this group’s relative lack of measurable neural decline, and consequent limited variability.
Importantly, these mediation effects could not be attributed to global increases in temporal variability, since substitution of temporal variability from other brain regions into the model (e.g., left or right MPFC or insula) did not reveal significant associations with risk-seeking mistakes, controlling for age (all p > .33). Additionally, temporal variability (MSSD) over the task was a better predictor of risk-seeking mistakes than simple variance of the signal at distinct task phases, since substitution of NAcc signal variance did not predict risk-seeking mistakes (controlling for age) during either anticipation (p = .24) or outcome (p = .11).
Functional connectivity analyses explored the possibility that age-related declines in frontostriatal connectivity might also contribute to financial risk-seeking mistakes. Although functional connectivity between the rostral anterior cingulate cortex and NAcc decreased with age both during anticipation and outcome periods, functional connectivity between these regions was not significantly associated with risk-seeking mistakes (controlling for age). Functional connectivity with other regions also did not correlate with risk-seeking mistakes at the initial whole-brain threshold. At a less stringent statistical threshold (p < .005), reduced functional connectivity between the insula / inferior frontal gyrus and NAcc was associated with increased risk-seeking mistakes. Since functional connectivity between these regions did not vary with age, however, it could not account for specific age-related increases in financial risk-seeking mistakes. 
 
7.4 Discussion
 
The present study investigated age differences in behavior and neural activity in a large community sample of healthy adults as they participated in a dynamic investment task (i.e., the BIAS task (Kuhnen & Knutson, 2005)). The BIAS task allows comparison of subjects’ actual investment choices with those of a “rational” risk-neutral actor who maximizes expected value. Although this investment task is an abstract version of financial decision making, it appears to have some ecological validity. Individuals who make more rational choices in the laboratory also report having accrued more assets in the real world. Despite the growing popularity of laboratory-based financial decision-making tasks, to the best of our knowledge, this represents the first validation of an experimental investment task with real world financial outcomes. Using this investment task, we found that older adults made more risk-seeking mistakes, and these mistakes were mediated by increased temporal variability in the NAcc. The findings thus indicate an age-related subcortical deficit that may promote risky decision-making mistakes.
While behavioral research does not suggest that aging impairs decision making overall (Mather, 2006), some findings suggest that aging may bias financial decisions (Denburg, et al., 2007; Li, et al., 2007; Mohr, et al., 2010; Peters, et al., 2007). In fact, consistent with the present findings, behavioral studies have found that some older adults will persistently choose a risky asset with a negative expected value over a less risky asset with a positive expected value (Denburg, et al., 2005), providing additional evidence for age-related impairments in updating expected value estimates (Mell, et al., 2005). The present findings cannot be accounted for by differences in investment experience and run contrary to popular stereotypes of increasing risk aversion with age. While adults who undergo brain scans might be more risk seeking than adults in general, additional subjects who completed a behavioral version of the investment task without scanning showed a similar increase in risk-seeking mistakes with age. 
These findings imply a general decline in the dynamic representation of value (Knutson, et al., 2005) with age. This decline may impair older adults’ ability to use probabilistic feedback over time to build, alter, and implement optimal value predictions about uncertain future events (Fera, et al., 2005). The neuroimaging findings extended those of prior research (Cox, et al., 2008; Mell, et al., 2009; Samanez-Larkin, et al., 2007; Schott, et al., 2007) by demonstrating that although age did not disrupt the representation of specific outcomes (i.e., –$10, +$10) in mesolimbic regions, older adults did not appear to use this feedback as effectively over time to make optimal decisions (Mell, et al., 2009). 
Novel analyses suggested that increased temporal variability in NAcc activation fully mediated the age-related increase in risk-seeking mistakes. This finding is generally consistent with recent evidence for age-related disruptions in the function of dopamine projections (Braskie, et al., 2008; Dreher, Meyer-Lindenberg, Kohn, & Berman, 2008). The finding also more specifically supports the proposition of one computational theory that aging increases variability in neural function (Li, et al., 2001), extending that proposition to a context that involves financial risk taking. 
Variability in dopamine firing, however, may or may not translate into variability in fMRI activity. Alternatively, increased variability in dopamine firing may decrease fMRI activity, particularly when averaged over time. Future studies may more directly test for an association between dopamine firing and neuroimaging signal variability in dopamine target regions with multimodal neuroimaging methods (e.g., positron emission tomography combined with fMRI (Schott, et al., 2008)) or by combining neuroimaging methods with pharmacological manipulations of dopamine (Pessiglione, et al., 2006). Consistent with translation across levels of analysis, comparative studies suggest a link between phasic dopamine release and the phasic increases in NAcc activity indexed by fMRI (Choi, Chen, Hamel, & Jenkins, 2006; Knutson & Gibbs, 2007). 
Additionally, an fMRI study found increased variability in the prefrontal activation (i.e., residual variance) of individuals who carried a genotype associated with reduced dopaminergic tone (i.e., COMT VAL carriers; Winterer, et al., 2006). These findings suggest a potential link between age-related changes in dopamine function and variability of activity in specific frontostriatal dopamine targets such as the NAcc. 
The novel measure of temporal variability in neural activity used in this study was averaged across the entire scanning session for each subject. The lack of sufficient measurement samples and dynamic nature of the present design precluded computation of stable mean differences for specific trial phases. Future studies with optimally timed experimental designs might better assess whether this variability is constant across time or related to specific trial phases. Despite these limitations and beyond observing increased temporal variability in the activity of some brain regions innervated by dopamine, we further found support for another key prediction of a computational account (Li, 2005; Li, et al., 2001). Along with increased temporal variability of neural activity, we also observed reduced discrimination between risky alternatives in older subjects. 
Age-related variability in NAcc activity may have compromised subjects’ ability to accurately predict the value of risky assets, which might have promoted suboptimal choices. In support of this interpretation, more traditional analyses revealed that individuals who make more risk-seeking mistakes show less correlation between NAcc activity and the expected value of risky options (Samanez-Larkin, Wagner, & Knutson, in press). Together, this evidence suggests that older adults may have difficulty using dynamic probabilistic feedback to predict and select the next best financial option over time.
Although this study focused on ventral striatal activity that mediated age-related mistakes in financial decision making, connected frontal regions may also play important roles specifically in facilitating the integration of value signals over time (Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006) and more generally in promoting value-based choice (Hampton, Bossaerts, & O'Doherty, 2006; Platt & Huettel, 2008). In the present study, functional connectivity analyses revealed that independent of age, individuals with reduced connectivity between the NAcc and inferior frontal gyrus / insula made more risk-seeking mistakes. Because connectivity between these regions did not vary as a function of age in this sample, however, this relative disconnection could not account for the effects of age on financial risk taking. Although connectivity between the NAcc and anterior cingulate declined with age, connectivity between these regions was not associated with risk-seeking mistakes. This absence of significant effects should not, however, rule out a possible role for frontostriatal disconnections in age-related differences in decision making. Future studies combining structural and functional neuroimaging techniques may more comprehensively address the possible functional consequences of age-related structural disconnections.
Although we did observe a negative association between NAcc and insula connectivity and risk-seeking mistakes, insula activity could not account for age-related differences in choice. Previous studies have found associations between insula activation and representation of risk (Preuschoff, Bossaerts, & Quartz, 2006) as well as risk prediction error (d'Acremont, Lu, Li, Van der Linden, & Bechara, 2009; Preuschoff, et al., 2008). Additionally, a previous study using the BIAS task found that insula activation predicted risk avoidance (i.e., risk-aversion mistakes) (Kuhnen & Knutson, 2005) but not excessive risk seeking (i.e., risk-seeking mistakes, the focus of the present study). Thus, one might not necessarily expect to find a relationship between insula activity and risk-seeking mistakes. However, it is also important to note that age differences in insular responses to incentives (Samanez-Larkin, et al., 2007) may have limited our ability to detect insular effects.
From a psychological standpoint, one additional explanation for the increase in risk-seeking mistakes in the present sample is that older adults may disproportionately anticipate gains over losses when choosing risky assets. Previous evidence suggests that although older adults show similar responses to gain and loss outcomes, as well as during anticipation of gains in the absence of learning, they show reduced anticipation of losses, reflected by both self-reported affect and neural activity (Samanez-Larkin, et al., 2007). Due to the dynamic and changing nature of the investment task, task-related affect measures were not included, and so this hypothesis could not be directly tested in the present study. 
If age-related changes in neural function systematically compromise financial decisions, this might hold significant implications for economic forecasting and policy. Researchers have only begun to empirically explore how individual differences in cognitive capacity might systematically influence financial decisions (Burks, et al., 2009). In the present study, older adults made investment errors more frequently than younger adults, possibly due to differences in the representation of expected value. According to this interpretation, variability in NAcc activity diminishes the accuracy of value predictions in older adults, which generates mistakes in financial risk taking. Older adults may find it more difficult to dynamically build value predictions in order to select the best risky financial option. If so, policy or incentive schemes might consider ways to ameliorate these age-related effects, for instance, by explicitly providing value-based decision aids (see next chapter). Alternatively, policy makers might facilitate more optimal choice among older investors by recommending expert consultation when value computational demands exceed neural capacities (Thaler & Sunstein, 2008).


CHAPTER 8
EXPERIMENT 7: VALUE-BASED DECISION AIDS IMPROVE FINANCIAL RISK TAKING IN YOUNGER AND OLDER ADULTS
 
8.1 Introduction
 
Unlike the rational actors posited by traditional financial models of optimal choice (Huang & Litzenberger, 1988), humans (and other organisms) must rely upon limited cognitive capacities when making decisions (Simon, 1982). Further, some cognitive capacities related to attention, memory, and cognitive control decline with age (Birren & Schaie, 2006; Park, et al., 2002; Salthouse, 2004). These limitations might bias human choice, with more extreme repercussions for older adults. Little research, however, has focused on whether aging might exacerbate biases in financial decision making, which neuropsychological mechanisms underlie these biases, and how they might be minimized. 
Although financial decision making doubtless requires explicit recall (which typically enlists attentional and declarative memory resources) to some extent, it may also rely on implicit evaluative processes. Declarative memory, which supports explicit recall, has been primarily associated with activity in lateral prefrontal and medial temporal brain regions (Blumenfeld & Ranganath, 2007; Brewer, Zhao, Desmond, Glover, & Gabrieli, 1998; Davachi, 2006; Paller & Wagner, 2002; Ranganath & D'Esposito, 2001; Wagner, et al., 1998), whereas valuation has been associated primarily with activity in mesolimbic projection regions, the medial prefrontal cortex (MPFC) and connected ventral striatum including the nucleus accumbens (NAcc) (Knutson & Bossaerts, 2007; Knutson, et al., 2008; O'Doherty, 2004). 
Event-related functional magnetic resonance imaging (fMRI) studies have specifically implicated mesolimbic projection areas in both optimal and suboptimal financial risk taking (Kuhnen & Knutson, 2005). Specifically, while increased NAcc activity precedes optimal financial risk-seeking choices, excessive NAcc activation foreshadows suboptimal risk-seeking “mistakes” (which deviate from the choices of a risk-neutral Bayesian-updating actor). 
While extensive research has linked deficits in attention, memory, and cognitive control to age-related declines in lateral prefrontal and medial temporal cortical function (Cabeza, et al., 2005; Hedden & Gabrieli, 2004), remarkably little research has investigated the effect of aging on valuation and associated mesolimbic function (Samanez-Larkin & Carstensen, forthcoming). Although emerging evidence reveals age-related declines in frontal and striatal structures (Buckner, 2004; Head, et al., 2005; Hicks & Birren, 1970; Rubin, 1999), less research has focused on whether these structural declines contribute to functional deficits in decision making.  Some evidence has implied preservation of mesolimbic function in older adults in simple value assessment tasks (Samanez-Larkin, et al., 2007), while other studies have documented age-related declines in mesolimbic function during probabilistic learning tasks (Aizenstein, et al., 2006; Fera, et al., 2005; Mell, et al., 2009; Samanez-Larkin, Kuhnen, Yoo, & Knutson, 2010).
Although prevalent stereotypes suggest that older adults avoid risk, in some situations, older adults may seek risk, or may simply make more errors than younger adults (Denburg, et al., 2005; Henninger, Madden, & Huettel, 2010; Mather, 2006; Mohr, et al., 2010). For instance, in a recent study, we found that older adults made more risk-seeking financial mistakes in an investment task than younger adults (Samanez-Larkin, et al., 2010). This bias did not extend to risk-aversion mistakes. Further, increased variability in NAcc function could account for the age differences in investment mistakes. While these findings implicate “noisier” striatal activity in suboptimal financial risk taking, they do not clearly establish which associated psychological process(es) impair choice, or how the impairment could be minimized. If NAcc activation supports the representation of expected value (Knutson, et al., 2005; Yacubian, et al., 2006), and disruptions in NAcc function compromise financial risk taking (Kuhnen & Knutson, 2005; Samanez-Larkin, et al., 2010), then interventions that provide expected value information might improve decision making. 
Alternatively, deficits in cognitive control mediated by lateral prefrontal regions (Badre, 2008; Badre & Wagner, 2004; D'Esposito, et al., 1995; Koechlin, Ody, & Kouneiher, 2003; Miller & Cohen, 2001) may underlie impairments in financial risk taking. For example, age-related impairments in attention and memory have been linked to deficits in cognitive control associated with the prefrontal cortex (Gazzaley & D'Esposito, 2007).  These age-related deficits in cognitive control may underlie age-related impairments in decision making (Brand & Markowitsch, 2009; however, see McCarrey, Henry, & Luszcz, 2010). Thus, if disrupted lateral prefrontal function compromises financial risk taking, then interventions that interfere with attention and declarative memory might impair decision making.
In two studies, we sought to determine whether disruptions in mesolimbic function might account for financial mistakes, and to improve the financial risk taking of both younger and older investors. In Study 1, a reanalysis of neural data from a recently published study (Samanez-Larkin, et al., 2010) explored whether individuals whose mesolimbic activity most closely tracked expected value also made more optimal risky financial choices. In Study 2, we examined whether increasing cognitive load or providing expected value information would alter the financial risk taking of healthy younger and older adults. Based on previous neuroimaging research, we speculated that individuals whose mesolimbic activation most closely tracked expected value would make more optimal choices in Study 1, and that provision of expected value information would improve the choices of both younger and older investors in Study 2.
 
8.2 Methods
 
8.2.1 Study 1
 
Study 1 presents a new analysis of a recently published dataset. More detailed information on the subjects and procedures is presented in chapter 7. While previous analyses focused on age differences in striatal activity, the goal of the present analysis was to further determine whether individual differences in rational choices correlated with the degree to which neural activation in the NAcc and MPFC tracked expected value. 
 
8.2.1.1 Subjects
 
Fifty-four subjects (mean age = 51.3 yrs, range = 21–85, 54% female) played an investment task while undergoing functional magnetic resonance imaging (fMRI). All subjects were recruited by a local survey research firm to socio-economically represent the population of the San Francisco Bay Area peninsula. Across the age range, subjects were matched on basic demographic variables (SES, income, ethnicity) by the recruitment agency. Subjects received a fixed compensation of $20 per hour, as well as a tenth of their total task earnings or a deduction of a tenth of their total task losses depending on their performance. 
 
8.2.1.2 Behavioral Investment Allocation Strategy (BIAS) Task
 
A version of the BIAS task (Kuhnen & Knutson, 2005) elicited both optimal and suboptimal financial choices from each individual. Each subject completed 10 blocks of 10 trials for a total of 100 trials. During each trial, subjects first saw two stocks and a bond (2 s), selected an asset when prompted with the word “Choose”, and then viewed their highlighted choice on the screen (4 s). After a brief delay (2 s) their earnings for that trial and total earnings were displayed (4 s), followed by a display of the outcomes of all assets on that trial (4 s), and finally, a fixation cross (fixation, 2 s).
At the beginning of each block, the computer randomly assigned one of the two stocks to be the “good” stock, and the other to be the “bad” stock, without the subject’s knowledge. On average, outcomes of the good stock (i.e., +$10 with 50% probability, +$0 with 25% probability, and −$10 with 25% probability) were better than outcomes of the bad stock (i.e., +$10 with 25% probability, +$0 with 25% probability, and −$10 with 50% probability) for each trial. The bond paid $1 with 100% probability on each trial. Earnings were independently drawn from each distribution for each trial, and subjects were informed about the distributions before performing the task. 
In the context of the BIAS task, the optimal strategy of a rational, risk-neutral agent is to pick a stock if he or she expects to receive a dividend that is at least as large as the bond earnings. Since the actual monetary amounts at stake in each trial were small (−$1 to $1), we adopted risk neutrality as the baseline model of investor behavior, a model which assumes that individuals maximize expected return.  Performance was assessed by comparing the choices of individual subjects to those made by a risk-neutral Bayesian-updating rational actor on each trial. The model makes a discrete choice (i.e., chooses one asset) on each trial. Any deviation from the model (i.e., choosing either of the other two assets) on each trial was categorized as a mistake.
 
8.2.1.3 fMRI Acquisition and Analyses 
 
Images were acquired with a 1.5T General Electric MRI scanner using a standard birdcage quadrature head coil. Twenty-four 4-mm thick slices (in-plane resolution 3.75 × 3.75 mm, no gap) extended axially from the mid-pons to the top of the skull, providing adequate spatial resolution of subcortical regions of interest (e.g., midbrain, ventral striatum). Functional scans of the whole brain were acquired every 2 s (TR = 2 s) with a T2*-sensitive in-/out- spiral pulse sequence (TE = 40 ms, flip = 90°) designed to minimize signal dropout at the base of the brain (Glover & Law, 2001). High-resolution structural scans were subsequently acquired using a T1- weighted spoiled grass sequence (TR = 100 ms; TE = 7 ms, flip = 90°), facilitating subsequent localization and coregistration of functional data. Preprocessing and whole brain analyses were conducted using Analysis of Functional Neural Images (AFNI) software (Cox, 1996). For preprocessing, voxel time series were sinc interpolated to correct for non-simultaneous slice acquisition within each volume, corrected for motion, slightly spatially smoothed (FWHM = 4 mm), converted to percentage signal change, and high-pass filtered. 
Analyses of brain imaging data involved two steps. In the first analytic step (a within-subject analysis), preprocessed time series were submitted to a regression model that included a primary regressor of interest that indexed the rational actor’s current trial estimate of the expected value of a stock (i.e., the integrated value estimate later used in Study 2) during anticipation. Specifically, the raw expected value estimates for the individual stock that the subject subsequently chose on each trial were modeled during anticipation of choice in one single regressor. Trials where subjects chose bonds were not included in this regressor. The regression model also included covariate regressors of potential interest representing anticipation of stock versus bond choices, individual trial earnings at outcome (–$10, $0, $1, $10), and two separate regressors representing task phases (anticipation, outcome). The regression model also included covariate regressors of non-interest, which indexed cumulative earnings (current wealth earned during the task, updated at each outcome period), current trial uncertainty (updated at each market period), residual motion, and trends across the scan session (i.e., baseline, linear, and quadratic). Regressors of interest were convolved with a γ-variate function that modeled a canonical hemodynamic response prior to inclusion in regression models (Cohen, 1997). These statistical maps were coregistered with structural images for each individual and spatially normalized by warping to Talairach space.
The second analytic step (a between subject analysis) investigated whether individuals whose NAcc and MPFC activation closely tracked expected value also made fewer mistakes (or more choices that conformed to those of the rational actor). Across subjects, expected value coefficients derived from the first analysis were regressed against the proportion of rational stock choices and age across the whole brain. Thus, the second analysis specifically regressed coefficients representing the dynamic association of brain activity with the rational actor’s estimate of expected value for each subject against a summary measure of task performance for each subject (i.e., number of rational stock choices), controlling for age.
Voxelwise thresholds for statistical significance at the whole brain level were set at p < .005. AFNI’s AlphaSim (Cox, 1996) was used to estimate the minimum cluster size of 36 2.0-mm3 voxels for a p < .05 whole-brain corrected threshold. Small volume correction was applied to the ventral striatum at the same threshold (p < .005) without the cluster criterion (which was too large to allow detection of activation in regions as small as the NAcc). In summary, the goal of this analysis was to examine whether individuals whose mesolimbic regions more closely tracked expected value also made fewer financial mistakes (controlling for age). 
Methodological issues related to age differences. In all fMRI analyses, care was taken to minimize potential confounds associated with age differences in subject characteristics, brain morphology, and hemodynamics (Samanez-Larkin & D'Esposito, 2008). Each individual was screened for dementia using the Mini-Mental State Exam and their structural and functional brain imaging data were inspected for abnormalities. Three individuals (not included in the 54 subjects described above) were excluded due to a structural abnormality (71 year-old male) or motion greater than 4 mm in any dimension from one volume acquisition to the next (26 year-old male, 74 year-old male). Each individual’s brain was warped into Talairach space with reference to hand-placed anatomical landmarks.
 
8.2.2 Study 2
 
8.2.2.1 Subjects
 
A separate sample of 108 healthy subjects completed Study 2. Forty-nine younger adults between the ages of 20–35 years (mean age = 27.3, 35% female) and fifty-nine older adults between the ages of 64–82 years (mean age = 70.6, 37% female) were recruited by a local survey research firm to socio-economically represent the population of the San Francisco Bay Area peninsula. Across age groups, subjects were matched on basic demographic variables (SES, income, ethnicity) by the recruitment agency prior to being scheduled to visit the laboratory. Across the sample, 62% percent of subjects were Caucasian, 13% Asian-American, 11% Hispanic, 10% African-American, and 4% more than one race. Forty percent of subjects were single, 55% married, and 5% divorced. For both trait affect and cognitive abilities, these age groups were similar to other between-group studies in the literature. Subjects received a fixed compensation of $20 per hour, as well as a tenth of their total task earnings or a deduction of a tenth of their total task losses depending on performance. Subjects in this study did not undergo fMRI.
 
8.2.2.2 Baseline BIAS Task
 
The same version of the BIAS task used in Study 1 was used in Study 2 as a baseline condition with two modifications. First, subjects completed 5 blocks of 10 trials each for a total of 50 trials (i.e., half of the trials included in Study 1). Second, the response deadline was removed for choices, such that all subject responses were self-paced. During each trial, subjects first saw two stocks and a bond (2 s), selected an asset when prompted with the word “Choose” (self-paced), and then viewed their highlighted choice on the screen (2 s). After a brief delay (2 s) their earnings for that trial and total earnings were displayed (4 s), followed by a display of the outcomes of all assets on that trial (4 s), and finally, a fixation cross (2 s; Figure 8-1, top row). After being led by an experimenter through extensive instructions, subjects played three blocks of practice baseline trials (totaling 30 trials) before playing the baseline task for actual cash. Although subjects viewed the probability distributions, the experimenter also explicitly stated that the stocks were risky and the bonds were riskless. For instance, an excerpt from the instructions reads: "Once again, the three assets available to choose from are two stocks and a bond.  The stocks are risky, because their earnings can be +$10, –$10, or $0.  The bond is riskless, because it always pays $1."
In all conditions, performance was assessed by comparing each subject’s choices to those made by a risk-neutral rational actor on each trial. Choices that matched the model were characterized as “rational” choices. Choices that deviated from the model were characterized as “irrational” mistakes and classified into one of three different categories: risk-aversion (bond choice), risk-seeking (stock choice), or confusion (stock choice) mistakes. Risk-seeking mistakes occurred if subjects chose a risky option (i.e., a stock) when the riskless option (i.e., a bond) was the optimal investment. Risk-seeking mistakes tended to occur early within blocks when the rational actor lacked sufficient evidence to distinguish the good from the bad stock. Confusion mistakes occurred if subjects chose a risky option (i.e., a stock) when the other risky option (i.e., the other stock) was the optimal investment. Confusion mistakes tended to occur later within blocks when the rational actor had sufficient evidence to distinguish the good from the bad stock.  Risk-aversion mistakes occurred if subjects chose the riskless option (i.e., the bond) when a risky option (i.e., a stock) was the optimal investment.  Risk-aversion mistakes also tended to occur later within blocks when the rational actor had sufficient evidence to distinguish the good from the bad stock. The threshold for distinguishing between risk-seeking mistakes and confusion or risk-aversion mistakes was at the trial when the expected value of one stock exceeded the expected value of the bond. In Study 2, the rational actor chooses the bond on 50% of trials. Thus, the maximum number of risk-seeking mistakes is 25 in each condition and the maximum sum of confusion and risk-aversion mistakes is 25.
Performance was examined using ANOVAs with rational choices (rational, irrational) and asset choices (stock, bond) as within-subject factors and age group (younger, older) as a between-subject factor. Follow-up t-tests are reported where main or interaction effects required further clarification. The analyses reported below focus on rational choices at baseline as well as on changes in rational choices from baseline to each manipulated condition. In addition to assessing subjects’ investment choices, we also queried their explicit knowledge of which assets had performed best at the end of each block (series of 10 trials).
 
8.2.2.3 BIAS Dual-Task Condition
 
In the dual-task manipulation, we examined whether adding an auditory task (i.e., dividing attention) previously shown to engage lateral prefrontal cortex and reduce explicit (declarative) memory (Foerde, Knowlton, & Poldrack, 2006) would disrupt rational choices relative to baseline. Thus, a continuous series of high- and low- pitched tones were played during the display frame of each individual trial (Figure 8-1, second row). Subjects were asked to keep a running sum of the count of both high- and low- pitched tones during each trial. After viewing the assets, choosing, and viewing the outcome and market results, subjects were asked either how many high- or how many low- pitched tones were played during that trial by choosing from one of three options. Tones were not played during the end-block question in which subjects indicated which stock performed best overall.
 
8.2.2.4 BIAS Discrete Value Condition 
 
In the discrete value manipulation, we examined whether adding a decision aid that provided episodic value information would enhance rational choices relative to baseline. Thus, the outcomes of each individual previous trial within a block were presented to subjects as they made investment decisions. During each trial, a visual representation of the individual outcomes of all prior trials within that block appeared below each asset (Figure 8-1, third row). Specifically, a large green plus indicated that a stock had won $10 in the past, whereas a large red minus indicated that a stock had lost $10 in the past. An unsigned grey line indicated that a stock had yielded $0 in the past. A small green plus (one-tenth the size of the green plus corresponding to $10 under stocks) indicated that the bond had earned $1 on each previous trial. This discrete value display was updated on the first screen of the following trial. Discrete value displays were reset after each block of ten trials and did not appear during the end-block question in which subjects identified which stock seemed best overall. 
 
8.2.2.5 BIAS Integrated Value Condition 
 
In the integrated value manipulation, we examined whether adding a decision aid that provided integrated value information would enhance rational choices relative to baseline. In this integrated value condition, subjects saw a summary of the current expected value of each asset based on prior outcomes within a block as they made individual investment decisions. During each trial, a visual representation of the rational actor’s current value estimate appeared below each asset (Figure 8-1, bottom row). For each stock, the expected value was equal to the current probability of that stock being the “good” stock multiplied by the expected value of the good stock (+$2.50) plus the current probability of that stock being the “bad” stock multiplied by the expected value of the bad stock (–$2.50). 
 
E[Viτ | Iτ–1] = xiτ [0.5 * 10 + 0.25 * (–10) + 0.25 * 0] + (1 – xiτ) [0.5 * (–10) + 0.25 * 10 + 0.25 * 0] = 2.5 * (2xiτ – 1) 
 
These estimates were updated on each trial according to Bayes’ Rule. For bonds, the expected value on each trial was equal to $1 and never changed. Estimates were displayed on a bivariate “meter” with an increasingly positive green bar indicating increasingly positive expected values and an increasingly negative red bar indicating increasingly negative expected values. This display of the integrated value of each asset was updated on the first screen of the following trial. The displays reset after each block of ten trials and were not displayed during the end-block question in which subjects identified which of the stocks performed best overall. 
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Figure 8-1.  Modified BIAS task design.  All four conditions of the modified investment task used in Study 2. (A) Baseline task, (B) dual-task condition, (C) discrete value condition, and (D) integrated value condition. Although not depicted here, the asset icons (triangle, circle, square) were labeled with the words “stock” or “bond”.
 
8.2.2.6 General Procedure Across Conditions 
 
An experimenter led subjects through a brief summary of the instructions, the probability distributions, and one sample trial of each condition before playing each of the three manipulated versions of the task. In the dual-task condition, subjects listened to sample high, low, and mixed high/low tone series before viewing the sample trial, and were additionally asked to “try hard to focus on both counting tones and making wise investment decisions on every single trial.” In the decision aid conditions, subjects were informed that the additional information provided was only an aid and that they should always use their best judgment to make the final decision. Beyond explaining the information that the decision aids represented, subjects were not instructed to use the aids in any specific way. Complete task instructions can be obtained by contacting the authors.
While all subjects played the baseline condition first, the order of the subsequent manipulated blocks was counterbalanced between subjects. Outcomes were pseudorandomly generated for each condition. Specifically, multiple sets of 50 trials of outcomes were randomly drawn from the probability distributions, and four of these randomly generated series were selected for the four task conditions for all subjects. The four series of outcomes were selected such that the rational actor model earned $75 in each to control for difficulty across conditions. Outcomes earned by individual subjects, however, were determined by their individual choices and were not in any way manipulated or controlled. Subjects earned significantly less than the rational actor in all versions of the task (baseline: t107 = –11.98, p < .0001; dual-task: t107 = –10.89, p < .0001; discrete value: t107 = –10.16, p < .0001; integrated value: t107 = –11.89, p < .0001). Younger and older adults did not significantly differ in actual earnings in the baseline, t106 = 0.30, p = .77, dual-task, t106 = –1.66, p = .10, discrete value, t106 = 1.32, p = .19, or integrated value, t106 = 0.02, p = .98, conditions. 
 
8.3 Results
 
8.3.1 Study 1
 
The key neuroimaging analysis examined whether individuals whose mesolimbic regions most closely tracked expected value also made more rational choices overall while investing. As predicted, whole brain regression revealed that individuals whose activation most closely tracked expected value (i.e., the rational actor’s integrated value computation) in mesolimbic regions (i.e., NAcc and MPFC) during anticipation made more rational choices overall. More specifically, this analysis revealed a correlation between coefficients representing the dynamic association of activity in mesolimbic regions with the rational actor’s estimate of expected value for each subject and a summary measure of task performance for each subject (i.e., number of rational stock choices) (Table 8-1 and Figure 8-2). This association implicates mesolimbic circuitry not only in the computation of expected value, but also in rational financial risk taking.
 
Table 8-1   Whole brain individual difference analysis. Regions where coefficients representing the association between brain activation and the actor’s changing estimate of expected value over time were correlated (controlling for age) with individual differences in the number of rational stock choices.
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Figure 8-2.    Expected value signals in mesolimbic regions correlate with task performance. An individual difference analysis revealed that more accurate representation of the actor’s estimate of expected value in mesolimbic regions, the MPFC (A) and NAcc (B), at anticipation was positively correlated with rational choices in the investment task.
 
Beyond these regions of interest, activity in other areas associated with declarative memory (i.e., parahippocampal gyrus) and attention (i.e., superior parietal lobule) also showed a positive association between rational choices and the representation of expected value. The only brain region that showed a negative association between expected value and rational choices was a small region of the right dorsolateral prefrontal cortex (Table 8-2).
 
8.3.2 Study 2
 
Beyond comparison of age groups in a baseline condition, the key behavioral analyses focused on how manipulations of attention and value information might influence individuals’ rational choices. Based on the neuroimaging findings, we sought to determine whether manipulations of attention or value might influence both rational choices and the acquisition of explicit knowledge about which assets were best (Foerde, et al., 2006). We predicted that the presentation of value information would increase rational choices in both younger and older adults. 
 
8.3.2.1 Baseline Condition 
 
Analysis of choices in the baseline condition yielded a significant rational choice × group interaction, F1, 106 = 5.824, p < .05, suggesting that performance differed between the two age groups. Follow-up tests confirmed that the older adults made fewer rational choices than the younger adults overall, t106 = –2.41, p < .05 (Figure 8-3). Despite these differences in choice between groups, older adults did not differ from younger adults in their explicit knowledge of which assets were best, since older adults did not make significantly more errors when identifying the correct stock at the end of a block, t106 = 0.64, p = .53. 
 
8.3.2.2 Dual-Task Condition 
 
In the dual-task (divided-attention) condition, secondary task performance (tone counting accuracy) was significantly above chance (33%) for both younger, t48 = 6.18, p < 0001, and older, t58 = 6.24, p < 0001, subjects. Although mean tone counting accuracy was numerically higher for younger (45.1%) than older adults (41.4%), the two groups did not significantly differ, t106 = –1.59, p = .12, suggesting a similar occupancy of attention (McDowd & Craik, 1988). The dual-task condition effectively disrupted declarative memory contributions, as revealed by a significant decrease in explicit asset knowledge at the end of blocks in the dual-task condition relative to baseline in younger adults, t48 = –2.10, p < .05, as well as a trend toward decreased explicit asset knowledge in older adults, t58 = –1.82, p = .07. The two age groups did not differ in the decrease in asset knowledge, t106 = –.40, p = .69, however.
Relative to the baseline condition, a non-significant condition (baseline, dual-task) × rational choice interaction, F1, 106 = .707, p = .40, revealed that the number of rational choices was similar in baseline and dual-task conditions, implying that the presence of the secondary task did not significantly influence rational choices. A non-significant interaction of condition, rational choices, and age group, F1, 106 = 0.03, p = .86, suggested that this lack of an effect of the secondary task on rational choices did not differ between younger and older adults. Follow-up tests confirmed that in the dual-task condition, the number of rational choices did not differ from baseline in younger adults, t48 = –0.42, p = .67, or older adults, t58 = –0.80, p = .43 (Figure 8-3). These findings, together with the effect of dual-task inference on the acquisition of explicit knowledge, suggest that at least partially distinct forms of learning and memory support individual investment decisions and explicit asset knowledge.
 
8.3.2.3 Discrete Value Condition 
 
A significant condition (baseline, discrete value) × rational interaction, F1, 106 = 34.58, p < .001, revealed that the number of rational choices increased in the discrete value condition, relative to the baseline condition. A non-significant interaction of condition, rational choice, and age group, F1, 106 = 0.68, p = .41, suggested that these improvements did not differ between younger and older adults. Follow-up tests confirmed that overall rational choices increased in both younger, t48 = 4.80, p < .0001, and older adults, t58 = 3.60, p < .001, with provision of discrete value information (Figure 8-3). 
The addition of discrete value information on individual trials also improved explicit asset knowledge at the end of blocks (even when decision aids were no longer present). There was a significant increase in asset knowledge in the discrete value condition in younger, t48 = 5.51, p < .0001, and older, t58 = 5.49, p < .0001, adults. The two age groups did not differ in increased asset knowledge, t106 = 0.15, p = .88.
 
8.3.2.4 Integrated Value Condition 
 
A significant condition (baseline, integrated value) × rational interaction, F1, 106 = 67.27, p < .0001, revealed that the number of rational choices increased in the integrated value condition, relative to the baseline condition. A non-significant interaction of condition, rational choice, and age group, F1, 106 = 0.18, p = .67, suggested that these improvements did not differ between younger and older adults. Follow-up tests confirmed that overall rational choices increased in both younger, t48 = 5.42, p < .0001, and older adults, t58 = 6.19, p < .0001, with the provision of integrated value information (Figure 8-3). 
Adding integrated value information on individual trials also improved explicit asset knowledge at the end of blocks (even when decision aids were no longer present). There was a significant increase in asset knowledge in the integrated value condition in both younger, t48 = 4.90, p < .0001, and in older, t58 = 5.91, p < .0001, adults. The two age groups did not differ in increased asset knowledge, t106 = –0.49, p = .63.
 
8.3.2.5 Comparison Across Conditions 
 
All of the manipulation conditions appeared to have similar effects on both age groups. Older adults, however, made fewer rational choices than younger adults at baseline and in every manipulated condition of the task. One of the primary goals of this study was to improve the decision making of older adults. Relative to younger adults at baseline, older adults made significantly fewer rational choices at baseline and in the dual-task condition, t106 = –3.13, p < .01 (Figure 8-3). Older adults, however, did not differ in rational choices from younger adults at baseline in either the discrete value, t106 = –0.27, p = .79, or integrated value, t106 = 1.08, p = .28, conditions (Figure 8-3). The increase from baseline in rational choices was higher in the discrete value condition than the dual-task condition for both younger, t48 = 4.89, p < .0001, and older adults, t58 = 3.90, p < .0001. Further, rational choices were even higher in the integrated value condition than the discrete value condition for both younger, t48 = 2.39, p < .05, and older adults, t58 = 2.75, p < .01 (Figure 8-3). Thus, providing value information (particularly in an integrated and simplified format) increased older adults’ rational choices to a level comparable to younger adults in the baseline condition. 
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Figure 8-3.   Improving decision making. (A) Older adults made fewer rational choices at baseline. (B) The addition of a secondary task did not disrupt performance relative to baseline (orange) for either younger (lighter bars) or older (darker bars) adults. However, the addition of discrete value information (blue) or integrated value information (purple) increased rational choices from baseline for both younger (lighter bars) and older adults (darker bars). For both age groups, the integrated value condition (iii) produced greater improvements than the discrete value condition (ii), which produced greater improvements than the dual-task condition (i). (C) Although older adults at baseline (dark grey O) and in the dual-task condition (orange O) made fewer rational choices than younger adults at baseline (light grey Y), older adults did not differ significantly in either the discrete value (blue O) or integrated value (purple O) conditions from young adults at baseline. Thus, presentation of information related to expected value matched the performance of older adults to that of younger adults at baseline. * p < .05; n.s. = not statistically significant.
 
 
8.3.2.6 Individual Mistake Types 
 
In the baseline condition, a non-significant main effect of asset (stock, bond), F1, 106 = .853, p = .36, revealed that subjects chose approximately equal numbers of stocks and bonds. A non-significant interaction of asset and age group (young, old), F1, 106 = 1.87, p = .17, suggested that the distribution of choices among stocks and bonds did not differ between younger and older adults. Tests of specific mistake types revealed that although the age groups did not differ in risk-aversion (bond) mistakes, t106 = –0.10, p = .92, or losing stock mistakes, t106 = 1.03, p = .31, older adults made significantly more risk-seeking (stock) mistakes, t106 = 2.23, p < .05 (Figure 8-4). 
Dual-Task Condition. A significant rational choice × group interaction, F1, 106 = 9.84, p < .01, suggested that performance differed between the two age groups in both the baseline and dual-task conditions. Follow-up tests confirmed that older adults made fewer rational choices than younger adults in the dual-task condition, t106 = –3.31, p < .01. Tests of specific mistake types revealed that older adults did not differ from baseline in the number of rational choices, t58 = –0.80, p = .43, risk-aversion mistakes, t58 = 1.38, p = .17, risk-seeking mistakes, t58 = –1.08, p = .29, or losing stock mistakes, t58 = –1.40, p = .17 (Figure 8-4). Although the number of rational choices, t48 = –0.42, p = .67, and losing stock mistakes, t48 = –1.40, p = .17, did not change for younger adults, they made fewer risk-seeking (stock) mistakes, t48 = –2.55, p < .05, and more risk-aversion (bond) mistakes, t48 = 3.37, p < .01 (Figure 8-4). These findings suggest that the secondary task may have increased younger adults’ choices of the more conservative riskless asset (bond).  
Discrete Value Condition. A significant rational choice × group interaction, F1, 106 = 8.80, p < .01, suggested that performance differed between the two age groups across both the baseline and discrete history conditions. Follow-up tests confirmed that older adults made fewer rational choices than younger adults in the discrete value condition, t106 = –2.99, p < .01. Tests of specific mistake types revealed that although risk-aversion mistakes did not differ from baseline for either younger, t48 = –1.42, p = .16, or older adults, t58 = –1.32, p = .19, for both age groups risk-seeking mistakes (younger, t48 = –1.78, p = .08; older, t58 = –2.34, p < .05) and losing stock mistakes were reduced (younger, t48 = –3.46, p < .01; older, t58 = –2.42, p < .05) (Figure 8-4). The two age groups did not differ in the change from baseline in rational choices or any of the mistake types (all p > .2). 
Integrated Value Condition. A significant rational choice × group interaction, F1, 106 = 7.14, p < .01, suggested that performance differed between the two age groups in both the baseline and integrated history conditions. Follow-up tests confirmed that older adults made fewer rational choices than younger adults in the integrated value condition, t106 = –2.41, p < .05. Tests of specific mistake types revealed that although risk-aversion mistakes did not differ from baseline for either younger, t48 = –0.87, p = .39, or older adults, t58 = –1.31, p = .20, for both age groups risk-seeking mistakes (younger, t48 = –3.05, p < .01; older, t58 = –2.86, p < .01) and losing stock mistakes were reduced (younger, t48 = –5.47, p < .0001; older, t58 = –6.91, p < .0001) (Figure 8-4). The two age groups did not differ in the change from baseline in rational choices or any of the mistake types (all p > .5). 
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Figure 8-4.  Study 2 mistake types by condition. RAM = risk-aversion mistake (bond choice), RSM = risk-seeking mistake (stock choice), CM = confusion mistake (stock choice). stk = stock choice; bnd = bond choice. Younger adults in light bars. Older adults in dark bars. Error bars correspond to standard error of the mean. Asterisk in the baseline condition denotes significant difference between younger and older adults in risk-seeking mistakes. Asterisks in remaining graphs denote significant differences in mistakes from baseline († p < .1, * p < .05).
 
8.4 Discussion
 
In two studies of community members spanning a broad age range, we examined neural and behavioral evidence for individual differences in financial risk taking, and sought to identify interventions that could minimize those differences. Study 1 combined neuroimaging with an investment task to reveal that individuals whose mesolimbic activation (i.e., in the NAcc and MPFC) most closely tracked a rational actor’s expected value estimates also made the most rational risky choices. Study 2 demonstrated not only that older adults made more mistakes than younger adults (Samanez-Larkin, et al., 2010), but also that task modifications could improve rational choice in both younger and older adults. Specifically, while attentional interference of declarative memory had little influence on rational choices in either group, provision of decision aids that provided value information increased rational choices in both groups, matching rational choices of older adults to the level of younger adults with no intervention. Together, these findings suggest that accurate neural representation of expected value supports rational financial risk taking, and suggest that providing expected value information improves financial risk taking in both younger and older adults.
From a neural standpoint, these findings are consistent with the notion that optimal financial risk taking requires input from mesolimbic circuits. Remarkably, disrupting the acquisition of declarative memory by dividing attention in the dual-task condition did not compromise the rational choices of younger or older adults (though it did make younger adults more conservative in their choices). Dividing attention did, however, reduce the accuracy of subjects’ explicit retrospective estimates of which stock was best. This dissociation between explicit report and implicit performance has previously been observed in studies in which attentional interference with explicit declarative learning can occur without influencing implicit probabilistic learning performance (Foerde, et al., 2006). Neuroimaging research suggests that when lateral prefrontal resources are occupied, striatal systems may play a more prominent role in learning (Poldrack & Foerde, 2008). Although Study 2 did not assess neural activity, its behavioral findings conceptually extend the distinction between declarative and implicit memory to a group of older adults. Since a “functional lesion” of declarative memory in the dual-task condition did not impair performance, these findings clearly contradict the notion that declarative memory is the primary or critical process required for rational choice in this investment task. 
These findings also revealed that providing both discrete and integrated value information increased rational choices relative to baseline in both younger and older adults. Investment choices of both age groups, however, still only matched those of the rational actor less than 60% of the time, demonstrating room for further improvement (for comparison, 75% of choices of Stanford Ph.D. students matched those of the rational actor; Kuhnen and Knutson, 2005). In the discrete value condition, although each trial presented complete information about the prior history of outcomes, this temporally varying episodic representation of value may have misled subjects on individual trials. Choice anomalies have been observed in previous research in the context of discrete and sequentially updated value information, including illusory correlations, the gambler’s fallacy, and others (Ayton & Fischer, 2004; de Laplace, 1951; Gilovich, Griffin, & Kahneman, 2002; Tversky & Kahneman, 1971). Accordingly, providing integrated rather than discrete estimates of expected value further increased rational choices in both groups, suggesting that this simplified and integrated value information was more effective in improving decision making.
If integrated value information is computed over time by or acts through mesolimbic circuits to promote rational risk taking, then individuals whose mesolimbic activity best represents the expected value estimates of a rational actor should make the most rational choices, as seen in Study 1.  Although subjects in Study 2 did not undergo neuroimaging, it is plausible that the value information they received either directly or indirectly provided a more accurate estimate of expected value to upstream neural systems that guide behavioral choice (e.g., the dorsal striatum and connected supplementary motor cortex). 
While converging evidence across the two studies suggests that expected value information may commonly act through mesolimbic circuits to improve financial risk taking, its important to acknowledge that the findings of Study 2 do not provide direct verification of this underlying neural mechanism. Although NAcc and MPFC activation have been implicated in representing expected value, integrating value across different stimulus dimensions, and assigning value to appropriate actions (Knutson & Cooper, 2005), providing expected value information in Study 2 may have bypassed the need for mesolimbic recruitment. However, it is also possible that the presence of value information provided a concurrent complementary source of evidence via the declarative memory system. The improvements in both individual investment decisions and explicit asset knowledge in the value conditions provides some evidence for this possibility, suggesting that task performance can be based on either implicit or explicit knowledge. This is consistent with evidence from related experimental tasks, which rely on experience-based learning from probabilistic feedback (Poldrack & Foerde, 2008; Poldrack & Packard, 2003; Shohamy, et al., 2008). The lack of a choice impairment in the dual-task condition indicates that explicit knowledge isn’t typically necessary, but the choice improvements in the presence of expected value information indicates that explicit representations of value may supplement implicit representations under some conditions. 
One important alternative explanation for performance differences across manipulations involves the use of different strategies. Performance measures over time, however, suggest that subjects (knowingly or unknowingly) approximated the strategies of the rational actor in all conditions. Specifically, subjects chose the bond early, followed by an increasing preference for the good stock over time (Figure 8-5). Further, in the presence of additional value information both younger and older subjects’ choices more closely matched those of the rational actor over time (Figure 8-5).
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Figure 8-5.  Proportion of choices allocated to the bond, good stock, and bad stock over time (trials) averaged across the five blocks for each condition in younger (left column) and older (right column) adults in Study 2. Error bars correspond to standard error of the mean.  Lightweight lines without error bars correspond to logarithmic trendlines representing the approximate proportion of choices allocated to the bond, good stock, and bad stock by the rational actor model averaged across blocks.
 
Although the present analyses focused on “rational” choices (i.e., that converged with those of the rational actor), additional analyses of “mistakes” (or choices that diverged from those of the rational actor) revealed that age differences
in performance across conditions were driven by age-related increases in mistakes when subjects chose stocks relatively early in blocks (risk-seeking mistakes). Additionally, analyses of mistakes revealed that expected value information selectively reduced stock mistakes both early and later in blocks. No age differences in mistakes were observed when subjects chose bonds (risk-aversion mistakes), and providing expected value information did not influence risk-aversion mistakes.
While providing value information improved the decisions of older adults, age differences still persisted across conditions. This same pattern of findings has been documented in classic cognitive training studies (Baltes & Kliegl, 1992). Although age differences were not eliminated within any particular condition, the present findings suggest that appropriately tailored interventions can improve the decision making of older adults to the baseline performance of younger adults. In the case of financial risk taking, decision aids that provide simplified estimates of expected value may help because they mimic the output of neural mechanisms that represent expected value. Informational content alone is not sufficient, and style of presentation may also matter, since both younger and older adults improved more when presented with integrated value information rather than with discrete value information. Unfortunately, in the world of financial risk taking, expected value information often cannot be reliably computed or is not available to investors. Nonetheless, the present findings suggest that understanding how the brain processes value information may eventually inform the design of more targeted and effective behavioral interventions for investors of all ages.


CHAPTER 9
GENERAL DISCUSSION
 
9.1 Summary of Results
 
The research presented in this dissertation represents an initial attempt to examine individual differences in incentive processing across the adult life span using an interdisciplinary and translational approach by combining psychological theory, imaging methods from neuroscience, experimental tasks from behavioral economics, models of learning from computer science, and models of choice from finance to examine decision making in the laboratory and in the real world. Overall the results reveal a pattern of age-related changes and individual differences across age in the function of neural systems supporting the valuation process. The seven experiments presented here explored individual differences across a range of reward-related tasks from basic anticipatory and consummatory responses to reward cues (Experiment 1) to probabilistic value-based learning (Experiments 2–5) to investment decision making (Experiments 6–7). 
The first set of experiments focused on the neural systems underlying anticipatory affective biases and the behavioral implications of these biases (Experiments 1–3). In Experiment 1, we used functional magnetic resonance imaging to determine whether younger and older adults differed in both self-reported and neural responsiveness to anticipated monetary gains and losses. We found evidence for intact striatal and insular activation during gain anticipation and outcome with age, but a relative reduction in activation during loss anticipation. The findings suggest that there is an asymmetry in the anticipation of gains and losses in older adults consistent with the age-related positivity effect (Carstensen, 2006; Carstensen, et al., 2005; Samanez-Larkin & Carstensen, forthcoming). Although the relative lack of anxiety about potential loss may contribute to increased well being, this asymmetry may put individuals with blunted loss anticipation at risk for certain types of financial mistakes. In Experiment 2, we followed up the subjects from Study 1 almost one year later to explore the implications of the anticipatory asymmetry on probabilistic learning. Although younger and older adults did not significantly differ behaviorally, we identified a subgroup of adults of all ages who performed especially poorly in the loss learning task. We found that sensitivity to anticipated losses in the anterior insula predicted subjects’ ability to learn to avoid losses several months later. The findings suggest that blunted insular sensitivity may disrupt learning to avoid loss in a subset of adults of all ages. In Experiment 3, we examined whether individual differences in probabilistic gain or loss learning across the adult life span were correlated with life financial outcomes. Directly following the results of Experiment 2, we wondered whether the individuals who performed poorly in the loss learning task also sacrificed more money in the real world. Consistent with this hypothesis and theories of anticipatory affect (Knutson & Greer, 2008; Knutson & Samanez-Larkin, forthcoming), in a larger continuous sample of adults between the ages of 20 and 85 we found that gain learning was correlated with real world accumulation of assets and that loss learning was associated with real world accumulation of debt (validated with credit reports and controlling for a number of other cognitive and demographic variables). The study not only provides evidence for the ecological validity of this laboratory-based learning task, but also identifies individual who may be especially vulnerable to financial losses. 
The second set of experiments focused on age differences in probabilistic value-based learning. In Experiment 4, we explored age differences in the probabilistic gain learning task. Consistent with Experiment 1, in this sample we found no evidence for an age-related change in the actual representation of reward outcomes at feedback in the striatum or MPFC. However, we did observe age-related declines in behavioral learning rates and in the neural representation of prediction error (i.e., difference between observed and expected outcomes) at feedback throughout the striatum and MPFC. The study suggests that learning impairments may be due to age-related changes in relative coding, which relies on the comparison of explicit values at feedback to current estimates of expected value for the chosen cue. In Experiment 5, we replicated the behavioral effects, but also found that with additional trials, older adults could learn to reach the same performance criterion as younger adults. These experiments reveal that although older adults may take longer to learn due to relative coding errors in mesolimbic regions, under supportive task conditions it is possible to match the performance of older and younger adults. 
The final set of experiments focused on age differences in risky decision making. In Experiment 6, we examined age differences in a more applied dynamic financial investment task. We found that older adults made more suboptimal choices than younger adults when choosing risky assets (which were probabilistically associated with various rewards). Consistent with neurocomputational theory (Li, 2005; Li, et al., 2001), we found that the age-related performance effect was mediated by a neural measure of variability in the nucleus accumbens. The study revealed a novel neural mechanism by which aging may disrupt rational financial choice. In Experiment 7, we sought to determine whether decision aids could improve financial risk taking. We found that presentation of expected value information improved decision making in both younger and older adults, but the addition of a distracting secondary task (hypothesized to disrupt frontal contributions to declarative learning and memory) had little impact on decision quality. Remarkably, provision of expected value information improved the performance of older adults to match that of younger adults at baseline. The findings from these experiments are consistent with the notion that mesolimbic circuits play a critical role in optimal choice, and imply that providing simplified information about expected value may improve financial decision making across the adult life span. 
 
9.2 Affective Biases
 
An asymmetry between positive and negative emotional experience has been documented in older adults in a number of behavioral studies employing a variety of tasks (Carstensen & Mikels, 2005). Socioemotional selectivity theory proposes that age-related sparing of positive emotional experience is related to goal-directed efforts to optimize emotional experience as one approaches the end of life (Carstensen, 2006). One aspect of this optimization may involve reducing negative arousal during anticipation of negative events3. However, as revealed in the experiments presented here the expression of these affective biases may be healthy and adaptive for regulating emotional experience and optimizing well-being, but may have harmful and serious effects on decision making. The follow-up experiments on learning identified a subset of adults across age that are especially vulnerable to losing money as a result of blunted loss anticipation. Although these experiments provide neural and behavioral markers for identifying individuals at heightened risk for financial loss, simply detecting this risk factor is only the first step. However, this area of research has the potential to make important contributions to the development of interventions that seek to limit the influence of these affective biases on proneness for financial mistakes in the real world.
 
9.3 Learning and Decision Making
 
The experiments on learning and decision making provide evidence for an age-related mesolimbic impairment in learning from probabilistic feedback related to increasing variability in neural activity and difficulty with the calculation of prediction errors. The findings are consistent with computational theories of neuromodulatory changes with age (Li, 2005; Li, et al., 2001), and the age-related increase in BOLD variability in the midbrain and striatum has been recently replicated (Figure 9-1) using very different functional tasks and analysis procedures (Garrett, Kovacevic, McIntosh, & Grady, 2010). However, it is important to note that although the differences at the neural level were quite substantial, the behavioral differences across the age groups were often subtle. For example, age differences in learning in Experiment 4 were only observed using parameters estimated from the computational model. In Experiments 6 and 7, although the older adults made less rational choices as defined by the model, overall earnings did not differ by age. Thus, it is possible that other unmeasured compensatory processes are recruited to drive probabilistic learning during decision making with age. Further, even the more subtle age differences in task performance were eliminated under supportive conditions designed to target the neural impairments identified using brain imaging. In the value-based probabilistic learning task, increasing the number of trials allowed older adults to overcome the slower accumulation of evidence and decisions improved. In the risky financial investment task, providing decision aids based on simplified estimates of value improved the decisions of older adults to the baseline levels of younger adults. It is important to acknowledge that this initial attempt at providing decision aids may have quite limited applications because in many domains this information is not available. Nevertheless, the specification of functional impairments provides targets for the development of more effective and widely applicable interventions in the future.
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Figure 9-1.   The age-related increase in neural variability in the midbrain and striatum (A) observed in Experiment 6 was replicated (B) in a recent study (adapted with permission from Garrett, et al., 2010, © the authors).
 
9.4 Limitations and Future Research
 
9.4.1 General Limitations Across Experiments
 
One important and largely overlooked potential contribution to individual differences in decision making is experience. The experiments presented here did not always attempt to control for differences in experience or knowledge, and did not examine interactions between experience and affective biases or fluid abilities. However, in the more applied experiments on investment decisions, where prior knowledge may be expected to matter most, a measure of investment experience did not alter the age effects. Nevertheless, there is compelling initial evidence for interactions between fluid and crystallized measures in decision making across the adult life span (Agarwal, et al., in press). Future studies in this area should attempt to regularly include more crystallized measures.
An atypical feature of all of the experiments is that the samples consisted of participants with an above-average level of education. Although all participants were recruited from the San Francisco Bay Area community (Stanford undergraduates excluded), nearly all younger and older adults had at least a bachelor’s degree, with many in each age group also holding single or multiple graduate degrees. Future studies will need to address the generalizability of these results to samples varying more in socioeconomic status. 
All of the experiments presented here were cross-sectional. Thus, it is not clear whether the changes observed are related to motivational or neurological changes with age or cohort differences that may shift with time (Baltes, Staudinger, & Lindenberger, 1999). Future research will need to follow individuals over time with repeated assessments to examine the extent to which these relationships are truly age-related.
 
9.4.2 Targets for Future Research
 
There are at least three natural targets for future research. The first set of experiments on affective biases suggests that this research could easily be extended to more focused study of groups of individuals who are at risk of suffering financial losses, such as victims of investment fraud. Although older adults are not more likely to fall victim to financial scams, as a group they are targeted by fraudsters much more often than young adults (AARP, 2007; FINRA, 2007, 2008). Future research could build upon the present experimental designs to characterize the behavior and neural sensitivity of fraud victims with the eventual goal of creating and testing interventions for increasing adaptive profiles of anticipatory affect (AARP, 2008, 2009). 
The second set of experiments on probabilistic value-based learning suggests that future research should attempt to more precisely assess age-related change in the midbrain and changes in the interactions between regions of the value network. The initial experiments presented here suggest that learning impairments may be due to age-related changes in relative coding. Previous studies in both human and non-human primates have revealed that prediction error signals are represented primarily in dopaminergic nuclei in the midbrain (McClure, et al., 2004b; Montague, et al., 2004; Schultz, 2001). Thus, what appear to be striatal and cortical deficits may be the result of deeper dysfunction in the midbrain or elsewhere in the value system. The majority of whole brain fMRI studies are currently being conducted on 1.5T or 3T scanners with protocols limited in sensitivity and signal-to-noise (SNR) ratios. However, the recent availability of ultra-high field-strength 7-Tesla MRI scanners allows for more focused visualization of structures (as small as 700μm) and increased SNR across the brain (Thomas, et al., 2008). The SNR at 7-Tesla is approximately 2.33 times higher than the SNR acquired in a similar voxel at 3-Tesla. The use of high-resolution protocols (i.e., slice prescriptions that selectively measure a subsection of the brain) at ultra-high field-strength has the potential to both structurally and functionally dissociate individual nuclei in the value system. Future research should aim to extend this work by further optimizing techniques for examining the structure and function of the human midbrain (D'Ardenne, et al., 2008) using ultra-high field and high-resolution imaging across the adult life span. Additionally, studies should take advantage of diffusion tensor imaging techniques for examination of age-related changes in the anatomical projections from the midbrain and connections across the value system.
The third natural area for extending this research is direct measurement of the dopamine system. The experiments presented here were limited to fMRI and cannot directly speak to the possible role of age-related dopaminergic changes. Although the results are consistent with neurocomputational theories of dopaminergic changes with age (Li, 2005; Li, et al., 2001) and the age effects across studies were primarily in mesolimbic regions, there are many non-dopaminergic contributions to the BOLD signal in subcortical and cortical brain regions. A number of in vivo methods for direct imaging of the dopamine synthesis capacity (Braskie, et al., 2008) and receptor binding potential (Bäckman, et al., 2000) are available using radioligand PET imaging. Although previous studies of aging have focused primarily on striatal dopamine function using common D2/D3 ligands, other ligands, such as [18F]fallypride, are available for measuring both striatal and extrastriatal (e.g., midbrain, cingulate, medial temporal lobe) binding potential (Riccardi, et al., 2008; Riccardi, et al., 2006; Zald, et al., 2010). Future studies should attempt to combine radioligand PET and fMRI (Buckholtz, et al., 2010; Buckholtz, et al., in press; Schott, et al., 2008) to characterize the dopaminergic contributions to age-related changes in decision making.
 
9.4.3 The Decision Neuroscience of Aging
 
Although the experiments presented here attempted to cover a range of processes, this area is still very much in its infancy. Research on the decision neuroscience of aging will surely continue to grow in coming years. The integrative decision neuroscience approach has tremendous potential for scientific and societal impact. We are currently at a unique moment in human history where demographic changes are and will continue to drastically alter the profile of decision makers in the global population. To the extent that this emerging subfield can respond to the immediate demand for integrative and translational research, scientists have the potential to make major contributions to improving the well-being of humans across the life span.
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1 Controlling for investment experience in one of the experiments where the data are available does not account for the age differences.

2 Studies using the Iowa Gambling Task will be discussed again later in the context of age-related change in risky decision making.

3 It is also important to note the age differences observed in neural activity in these experiments were revealed through interactions between age and condition. Thus, the findings are consistent with the hypothesis from socioemotional selectivity theory that these affective preferences are goal-directed and not simply a result of neural decline (Samanez-Larkin & Carstensen, forthcoming).
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